Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research sheds light on how immune system's 'first responders' target infection

28.02.2012
University of Texas Medical Branch at Galveston researchers have discovered previously unsuspected aspects of the guidance system used by the body's first line of defense against infection.

The new work focuses on the regulation of immune response by two forms of the signaling molecule IL-8, as well as IL-8's interaction with cell-surface molecules called glycosaminoglycans (or GAGs for short).

Infected or injured tissues release IL-8 to attract bacteria- and virus-killing white blood cells known as neutrophils, a process known as "recruitment." As IL-8 proteins disperse from the infection site, they anchor themselves to GAGs to provide "signposts" that help neutrophils find their target.

"Neutrophils are killing machines but they're also blind, so they shoot at anything and everything — to fight infection effectively and minimize collateral tissue damage, they have to be precisely directed and activated," said UTMB associate professor Krishna Rajarathnam, lead author of a paper on the study in the Journal of Leukocyte Biology. "This process of spatial and temporal control is quite complex, but we've gained a fundamental insight into a very basic mechanism."

That mechanism is based on IL-8's existence as both a single unit (a monomer) and a pair (a dimer). In nature, during the course of onset and resolution of infection, IL-8 could exist as a monomer, dimer, or both.

To study how this process affects immune response, Rajarathnam and his colleagues created two forms of IL-8 not found in nature: one made of monomers unable to join into dimers, and the other of dimers unable to split into monomers. They then carried out a series of mouse experiments with monomers, dimers and "wild-type" (normal) IL-8 in which they found that differing concentrations of IL-8 monomer and dimer clearly influenced the strength of neutrophil recruitment.

In addition, drawing on earlier work, they determined that these effects varied depending on the location of the infection — leading them to the conclusion that IL-8 monomers and dimers interact differently with GAGs in different body tissues.

"Our previous experiments involved IL-8 in the lung, and in this study we looked at what happened if we injected IL-8 in the peritoneum, the abdominal wall," Rajarathnam said. "In the lung, the neutrophil activity we saw for wild-type IL-8 was between the monomer alone or the dimer alone, but in the peritoneum the wild type actually produced greater activity. It was synergistic, meaning that in the wild type the monomer and the dimer interact cooperatively to facilitate neutrophil recruitment."

Such unpredictable results are to be expected when investigating a phenomenon as complex as immune response, according to Rajarathnam.

"I believe we have discovered a crucial and fundamental mechanism that regulates neutrophil function," Rajarathnam said. "Our future goal is to characterize the distinct activities of monomer and dimer to see if we can 'control' runaway inflammation and related neutrophil-induced tissue damage in diseases such as sepsis."

Other authors of the paper include graduate student Pavani Gangavarapu, assistant professor Lavanaya Rajagopalan, instructor Deepthi Kolli, assistant professor Antonieta Guerrero-Plata and Dr. Roberto Garofalo.

"This was a truly translational project, bringing together researchers from both basic and clinical sciences to study the molecular mechanisms underlying disease," Rajarathnam said.

This work was supported by a grant from the National Institutes of Health.

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>