Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals new understanding of X chromosome inactivation

27.11.2012
In a paper published in the Nov. 21 issue of Cell, a team led by Mauro Calabrese, a postdoctoral fellow at the University of North Carolina in the lab of Terry Magnuson, chair of the department of genetics and member of the UNC Lineberger Comprehensive Cancer Center, broadens the understanding of how cells regulate silencing of the X chromosome in a process known as X-inactivation.
“This is a classic example of a basic research discovery. X-inactivation is a flagship model for understanding how non-coding RNAs orchestrate large-scale control of gene expression. In the simplest terms, we are trying to understand how cells regulate expression of their genes. Our findings are relevant across the board -- by understanding how normal cells function we can apply that knowledge to similar situations in the understanding and treatment of disease,” said Calabrese.

Proper regulation of the X chromosome plays a crucial role in mammalian development. Females inherit a pair of X chromosomes from their parents, and the process of X-inactivation shuts down one of these two Xs.

“Males have XY. Females have two Xs. One of those Xs needs to get shut off. If it does not, it’s not compatible with life. It’s how we have evolved to equalize doses between males and females,” said Calabrese.

While the manner in which the X chromosome is deactivated has been actively studied for 50 years, the exact mechanisms that regulate the process remain a mystery. Calabrese’s research used high-throughput sequencing to determine the location and activity of chromosomes with far greater accuracy than previous research.

“Basically, this is using the sequencing technology as a high resolution microscope,” said Calabrese.

Under a microscope, the inactive X chromosome (Xi) appears as a cloud-like structure, because it is covered with a non-coding RNA known as Xist. In the traditional model of X-inactivation, genes located inside the cloud are completely silenced, with 15 percent of the genes from the inactive X chromosomes escaping to become active.

“The prevailing thought was that genes that escaped X inactivation were pulled out of the core and expressed out there,” said Calabrese.

The work of Calabrese’s team complicates the current model of X-inactivation by finding indications of gene activity inside the Xist cloud and the presence of inactive genes outside the cloud, both of which would not have been thought possible in the prevailing model.

“It’s kind of a subtle thing, but mechanistically it is a big difference,” said Calabrese.

Inside the Xist cloud, sequencing discovered traces of DNase I sensitivity, a feature usually linked to transcription activity. While other markers associated with transcription were absent, the presence of DNase I sensitivity suggested that the nucleus did recognize the inactive X as usable DNA, but an unknown suppressive mechanism was preventing genes from being activated.

“We were surprised to see that. If they were totally silent, you would expect this to be not there… This suggests that transcription factors or other proteins that bind DNA are still accessing the inactive X,” said Calabrese.

The other surprising findings involve the 15 percent of “escaper” genes from the inactive X. Calabrese found evidence that active genes were found both inside and outside the Xist cloud, and that silenced genes that lay alongside active genes outside of the Xist cloud remained inactive.

“If X-inactivation was a strict nuclear barrier, then pulling a gene outside the barrier would turn it on, but it has got to be more than that because when an inactivated gene that is beside an escaper is outside this domain, it is still turned off,” said Calabrese.

The presence of DNase I sensitivity within the Xist cloud and the finding of inactive genes outside of the cloud suggest that a site-specific mechanism is regulating genes on the chromosome in a more subtle way than the binary “on/off” function posited by the prevailing model. The exact mechanism for this remains unknown. Although Calabrese believes that Xist still plays a role, its exact function and whether other factors influence X-inactivation remain questions for future research.

“We know that Xist is required to turn off the inactive X. We know that. We have no idea how” said Calabrese.

Beyond revising the understanding of how X-inactivation works, Calabrese said that deeper understanding of the function of Xist could reveal more about the role of other non-coding RNAs in cellular development. These RNAs could become useful targets for future therapies and drug development.

“We know that too much expression of the wrong non-coding RNAs can lead to cancer. Also, forced expression of other non-coding RNAs can prevent cancer. Generally, we do not know how these RNAs work,” said Calabrese.

William Davis | EurekAlert!
Further information:
http://www.unc.edu

Further reports about: DNA DNase X chromosome X-inactivation non-coding RNAs transcription factor

More articles from Life Sciences:

nachricht Biology in a twist -- deciphering the origins of cell behavior
31.03.2015 | National University of Singapore

nachricht Speech dynamics are coded in the left motor cortex
31.03.2015 | Universitätsmedizin Göttingen - Georg-August-Universität

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Biology in a twist -- deciphering the origins of cell behavior

31.03.2015 | Life Sciences

Wrapping carbon nanotubes in polymers enhances their performance

31.03.2015 | Materials Sciences

Research Links Two Millennia of Cyclones, Floods, El Niño

31.03.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>