Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Programme Bio-Economy: 11 projects at the University Stuttgart

21.08.2014

From biogas to micro algae

The use of sustainable raw materials is the focus of the new research programme bio-economy for which the Baden-Württemberg State Government is making 13 million Euros available.


Investigations on the fermentability of organic substrates

Photo: Fraunhofer IGB

Of the total of 45 research projects recommended for funding, 11 projects already approved are established at seven institutes at the University of Stuttgart; these have a volume of two million Euros. Prof. Thomas Hirth, Head of the Institute of Interfacial Engineering and Plasma Technology (IGVP) at the University of Stuttgart and the Fraunhofer-Institute for Interfacial Engineering and Biotechnology (IGB) has been appointed as the spokesperson of the steering group.

The quintessence of the research strategy is to observe the bio-economy in the value added cycles and as a total system. In so doing social, economic and political framework conditions in using renewable raw materials as well as the effects on the environment and society should be taken into account in equal measure.

On the supply side agricultural and plant science, forestry, aquatic biomass as well as biogenic residue were identified as the most important research fields. On the demand side resp. utilisation side the food production as well as in the follow-up a material or energetic use of residues are the focus. Cross-sectional areas were stated as being biodiversity, water and soil conservation, ethics as well as economic and social sciences.

The main component of the research programme bio-economy refers to three interdisciplinary and cross-locational associations:

• The research association “Sustainable and flexible value-added chains for biogas in Baden-Württemberg“, combines the biogas competences in the state. It forms the entire value added chain of biogas production and its product use and investigates in particular the recycling of waste materials. Seven of the sub-projects established at the University of Stuttgart fall into this field. Among other things they deal with the performance increase of biogas systems, the development of new biomass sources, for example, from waste materials and sewage sludge as well as with the appropriate storage of biogas.
• The research association “Lignocellulose – changing to an alternative raw material platform for new projects and materials“ targets the holistic use of woody biomass (wood, straw, etc.) to manufacture chemical products and energy sources. The two products at the University of Stuttgart focus on treatment methods to extract such materials in premium quality as well as fermentation processes to manufacture so-called bulk chemicals and fuels.
• The research association “Integrated use of microalgae for nutrition“ wishes to extend the range of use of microalgae for the food and animal feed sector. Microalgae are able to form up to five times more biomass per area than classic energy crops and do not require any valuable arable land. In this association two sub-projects at the University of Stuttgart deal with regional land utilisation and biodiversity aspects as well as with the harmonisation of lifecycle assessments for bio-based products.

Along with the Universities of Hohenheim, Stuttgart, Freiburg, Heidelberg and Ulm, the Karlsruhe Institute for Technology (KIT) as well as the Deutsche Verein des Gas- und Wasserfaches e. V. (German Association for gas and water applications), the Forstliche Versuchs- und Forschungsanstalt BW (Forest Research Institute), the Fraunhofer Institute for Chemical Technology and the Centre for European Economic Research are involved. The projects are to be presented in the framework of the 1st Baden-Württemberg Bioeconomy Congress on 29th and 30th October 2014 in Haus der Wirtschaft in Stuttgart.

Further information:
Prof. Thomas Hirth, Institute for Interfacial Engineering and Plasma Technology at the University of Stuttgart and Fraunhofer-Institute for Interfacial Engineering and Biotechnology IGB, Tel. 0711/970-4400,
Email: thomas.hirth (at) igb.fraunhofer.de

Andrea Mayer-Grenu, University of Stuttgart, Department of University Communication, Tel. 0711/685-82176,
Email: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-stuttgart.de/

Further reports about: Biotechnology Engineering IGB Interfacial Plasma energy environment

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>