Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research could lead to way to halt deadly immune response

10.02.2010
Scientists report further progress in study of complement reaction

Researchers have teased out the molecular process that can shut down a marauding, often deadly immune response that kills thousands each year who suffer battlefield casualties, heart attacks, strokes, automobile accidents and oxygen deprivation, according to an article published in the January edition of Molecular Immunology.

The article provides additional detail about the enormously complex biomechanics of a reaction first observed in the lab by Neel Krishna, Ph.D., and Kenji Cunnion, M.D., while conducting pediatric research at Children's Hospital of The King's Daughters (CHKD) and Eastern Virginia Medical School (EVMS) in Norfolk, Va.

"Military medics and ER doctors know that one of the most common killers is an out-of-control immune system that destroys organs after a patient who has suffered a trauma is ostensibly stabilized," said Krishna, a pediatric virologist at CHKD and assistant professor of microbiology and molecular cell biology at EVMS.

The January publication comes almost four years after the two researchers made a serendipitous and unexpected finding when they inserted a shell of a virus that causes childhood diarrhea into a Petri dish primed to measure the response of primordial immune system.

The complement reaction completely stopped.

"Stopping this reaction pharmacologically could save lives on the battlefield, in hospital emergency rooms and in neonatal intensive care centers, where doctors struggle to save oxygen-deprived newborns," said Krishna. "Temporarily stopping the response could have a huge impact in trauma and save many lives."

Over the last four years, Krishna and Cunnion have successfully teased out the precise biological mechanism behind this unexpected response and identified the specific molecular region of the viral shell that stops the complement process.

One of the oldest biological mechanisms in the evolution of life, the complement system is so complex that research scientists spend entire careers studying it, publishing in journals devoted solely to the study of this primordial defense mechanism.

The complement system exists in almost identical form in everything from seagulls to starfish. Its job is to launch a massive, multi-pronged attack against any foreign body that could threaten the life or health of an organism. Each method of attack is instigated by molecular changes involving as many as 30 substances that result in the same effect, a component designed to destroy the membrane encasing offending cells.

In the case of trauma that leaves cells without oxygen for too long, the complement system kicks in when the re-oxygenation occurs and lays waste to partially damaged cells that might otherwise survive. This is known as a reperfusion injury. This process kills slowly, often over several days. In heart attacks, the death of heart cells, cardiomyocytes, during reperfusion is irreversible and lethal. In cases of trauma and hypoxia, the progressive death of brain cells often results in catastrophic, irreversible brain injury or death. Multiple organ dysfunction syndrome caused by reperfusion injury is the leading cause of death in surgical patients and in trauma patients who survive the first 24 hours.

For decades, researchers have worked to develop medications and treatments to mitigate the effects of reperfusion injury.

Stopping the complement cascade could eliminate the major cause. In earlier published research, authors showed that the introduction of the harmless membrane of the coat of human astrovirus, which causes pediatric diarrhea, shuts down the main pathway leading to activation of an often lethal complement cascade. The research published in January's Molecular Immunology, demonstrates that the introduction of the astrovirus shell also shuts down a second major trigger, dubbed the lectin pathway.

"This research explains the almost complete cessation of complement activity," Krishna said. "This rapid cessation can virtually eliminate most reperfusion injuries."

This research expands upon findings presented in September 2009 at the 12th European Meeting on Complement in Human Disease. That presentation drew enthusiatic response from a number of renowned complementologists who sought samples of the astrovirus shard used by Krishna and who intend to launch additional research into the phenomenon.

"We're rapidly moving toward therapeutic application," Krishna said.

Doug Gardner | EurekAlert!
Further information:
http://www.evms.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>