Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research could lead to way to halt deadly immune response

10.02.2010
Scientists report further progress in study of complement reaction

Researchers have teased out the molecular process that can shut down a marauding, often deadly immune response that kills thousands each year who suffer battlefield casualties, heart attacks, strokes, automobile accidents and oxygen deprivation, according to an article published in the January edition of Molecular Immunology.

The article provides additional detail about the enormously complex biomechanics of a reaction first observed in the lab by Neel Krishna, Ph.D., and Kenji Cunnion, M.D., while conducting pediatric research at Children's Hospital of The King's Daughters (CHKD) and Eastern Virginia Medical School (EVMS) in Norfolk, Va.

"Military medics and ER doctors know that one of the most common killers is an out-of-control immune system that destroys organs after a patient who has suffered a trauma is ostensibly stabilized," said Krishna, a pediatric virologist at CHKD and assistant professor of microbiology and molecular cell biology at EVMS.

The January publication comes almost four years after the two researchers made a serendipitous and unexpected finding when they inserted a shell of a virus that causes childhood diarrhea into a Petri dish primed to measure the response of primordial immune system.

The complement reaction completely stopped.

"Stopping this reaction pharmacologically could save lives on the battlefield, in hospital emergency rooms and in neonatal intensive care centers, where doctors struggle to save oxygen-deprived newborns," said Krishna. "Temporarily stopping the response could have a huge impact in trauma and save many lives."

Over the last four years, Krishna and Cunnion have successfully teased out the precise biological mechanism behind this unexpected response and identified the specific molecular region of the viral shell that stops the complement process.

One of the oldest biological mechanisms in the evolution of life, the complement system is so complex that research scientists spend entire careers studying it, publishing in journals devoted solely to the study of this primordial defense mechanism.

The complement system exists in almost identical form in everything from seagulls to starfish. Its job is to launch a massive, multi-pronged attack against any foreign body that could threaten the life or health of an organism. Each method of attack is instigated by molecular changes involving as many as 30 substances that result in the same effect, a component designed to destroy the membrane encasing offending cells.

In the case of trauma that leaves cells without oxygen for too long, the complement system kicks in when the re-oxygenation occurs and lays waste to partially damaged cells that might otherwise survive. This is known as a reperfusion injury. This process kills slowly, often over several days. In heart attacks, the death of heart cells, cardiomyocytes, during reperfusion is irreversible and lethal. In cases of trauma and hypoxia, the progressive death of brain cells often results in catastrophic, irreversible brain injury or death. Multiple organ dysfunction syndrome caused by reperfusion injury is the leading cause of death in surgical patients and in trauma patients who survive the first 24 hours.

For decades, researchers have worked to develop medications and treatments to mitigate the effects of reperfusion injury.

Stopping the complement cascade could eliminate the major cause. In earlier published research, authors showed that the introduction of the harmless membrane of the coat of human astrovirus, which causes pediatric diarrhea, shuts down the main pathway leading to activation of an often lethal complement cascade. The research published in January's Molecular Immunology, demonstrates that the introduction of the astrovirus shell also shuts down a second major trigger, dubbed the lectin pathway.

"This research explains the almost complete cessation of complement activity," Krishna said. "This rapid cessation can virtually eliminate most reperfusion injuries."

This research expands upon findings presented in September 2009 at the 12th European Meeting on Complement in Human Disease. That presentation drew enthusiatic response from a number of renowned complementologists who sought samples of the astrovirus shard used by Krishna and who intend to launch additional research into the phenomenon.

"We're rapidly moving toward therapeutic application," Krishna said.

Doug Gardner | EurekAlert!
Further information:
http://www.evms.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>