Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research provides insight into new drug resistance in hospital microbes

14.07.2011
Mass. Eye and Ear, Harvard Medical School investigators share finding in July 2011 issue of Antimicrobial Agents and Chemotherapy

Hospitals struggle to prevent the infections that complicate treatment for cancer, joint replacement, heart surgery and other conditions. Hospital-acquired infections are often resistant to multiple antibiotics, leading to approximately 100,000 deaths and more than $30 billion in additional health care costs yearly. New drugs are being developed to combat these infections, but resistance invariably emerges to these last-line drugs.

Daptomycin, a new antibiotic approved by the FDA in 2003, is used to treat infections caused by multi-drug resistant bacteria, including staph and microbes known as enterococci. Scientists in the Department of Ophthalmology at Mass. Eye and Ear and Harvard Medical School, and the pharmaceutical company Cubist, which produces daptomycin under the trade name Cubicin, teamed up to discover the basis for resistance that has now begun to emerge to daptomycin in the enterococci. Their discovery of a new mechanism of resistance is described in an article in the current (July) issue of Antimicrobial Agents and Chemotherapy.

In a two-week experiment, investigators were able recreate the development of resistance in the laboratory in a manner similar to that which occurred in the hospital. Using new genome sequencing technology, they resequenced the entire genome of the resistant enterococcus strain to identify all of the genetic changes. The researchers found changes in genes that they were also able to identify in hospital daptomycin resistant strains. Mutations in a gene encoding an enzyme called cardiolipin synthase were able by itself to confer daptomycin resistance to a laboratory strain of enterococcus.

"Knowing the changes that correspond with resistance not only tells us what happens in resistant strains, it tells us much about how exactly how the antibiotic works, providing new ideas for better treatment and next generation drugs," observed Dr. Michael S. Gilmore, a scientist at Harvard Medical School and the Mass. Eye and Ear, and the corresponding author.

Dr. Gilmore credits a large part of the success of this study to the genomics skills of first author and postdoctoral associate Dr. Kelli Palmer, and to the collaboration with industry partners Dr. Jared Silverman and colleagues from Cubist Pharmaceuticals, Inc. Drs. Gilmore and Silverman have been collaborating in a university/industry partnership, the Harvard-wide Program on Antibiotic Resistance, which aims to build interdisciplinary teams to understand resistance and develop new treatments for resistant infections.

Authors: Kelli L. Palmer, Anu Daniel, Crystal Hardy, Jared Silverman, and Michael S. Gilmore (list of affiliations available in the PDF)

Grant Support: Portions of this work were supported by NIH grant AI072360 (to M.S.G), the Harvard-wide Antibiotic Resistance Project AI083214, NIH fellowship support grant to EY020734 to K.L.P., and Cubist Pharmaceuticals, Inc.

About Mass. Eye and Ear

The Mass. Eye and Ear/Mass General Department of Ophthalmology is one of the world's premier centers for excellence in ophthalmic clinical care, research and education. Steadfast dedication to an integrated three-part mission keeps the Department at the forefront of advances in patient care and scientific discovery, while training and advancing generations of leaders through our academic and professional development programs. As the seat of Ophthalmology leadership for Harvard Medical School, the Department builds on the strengths of affiliated faculty from such renowned local institutions as Joslin Diabetes Center, Children's Hospital Boston, Schepens Eye Research Institute, Brigham and Women's Hospital, Beth Israel Deaconess Medical Center and Boston Veteran's Administration Healthcare System to encourage innovation and remain a global leader in ophthalmology.

Founded in 1824, Mass. Eye and Ear is an independent specialty hospital, an international center for treatment and research, and a teaching affiliate of the Harvard Medical School.

For more information, call (617) 523-7900 or TDD (617) 523-5498 or visit www.MassEyeAndEar.org.

Mary Leach | EurekAlert!
Further information:
http://www.MassEyeAndEar.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>