Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research provides insight into new drug resistance in hospital microbes

14.07.2011
Mass. Eye and Ear, Harvard Medical School investigators share finding in July 2011 issue of Antimicrobial Agents and Chemotherapy

Hospitals struggle to prevent the infections that complicate treatment for cancer, joint replacement, heart surgery and other conditions. Hospital-acquired infections are often resistant to multiple antibiotics, leading to approximately 100,000 deaths and more than $30 billion in additional health care costs yearly. New drugs are being developed to combat these infections, but resistance invariably emerges to these last-line drugs.

Daptomycin, a new antibiotic approved by the FDA in 2003, is used to treat infections caused by multi-drug resistant bacteria, including staph and microbes known as enterococci. Scientists in the Department of Ophthalmology at Mass. Eye and Ear and Harvard Medical School, and the pharmaceutical company Cubist, which produces daptomycin under the trade name Cubicin, teamed up to discover the basis for resistance that has now begun to emerge to daptomycin in the enterococci. Their discovery of a new mechanism of resistance is described in an article in the current (July) issue of Antimicrobial Agents and Chemotherapy.

In a two-week experiment, investigators were able recreate the development of resistance in the laboratory in a manner similar to that which occurred in the hospital. Using new genome sequencing technology, they resequenced the entire genome of the resistant enterococcus strain to identify all of the genetic changes. The researchers found changes in genes that they were also able to identify in hospital daptomycin resistant strains. Mutations in a gene encoding an enzyme called cardiolipin synthase were able by itself to confer daptomycin resistance to a laboratory strain of enterococcus.

"Knowing the changes that correspond with resistance not only tells us what happens in resistant strains, it tells us much about how exactly how the antibiotic works, providing new ideas for better treatment and next generation drugs," observed Dr. Michael S. Gilmore, a scientist at Harvard Medical School and the Mass. Eye and Ear, and the corresponding author.

Dr. Gilmore credits a large part of the success of this study to the genomics skills of first author and postdoctoral associate Dr. Kelli Palmer, and to the collaboration with industry partners Dr. Jared Silverman and colleagues from Cubist Pharmaceuticals, Inc. Drs. Gilmore and Silverman have been collaborating in a university/industry partnership, the Harvard-wide Program on Antibiotic Resistance, which aims to build interdisciplinary teams to understand resistance and develop new treatments for resistant infections.

Authors: Kelli L. Palmer, Anu Daniel, Crystal Hardy, Jared Silverman, and Michael S. Gilmore (list of affiliations available in the PDF)

Grant Support: Portions of this work were supported by NIH grant AI072360 (to M.S.G), the Harvard-wide Antibiotic Resistance Project AI083214, NIH fellowship support grant to EY020734 to K.L.P., and Cubist Pharmaceuticals, Inc.

About Mass. Eye and Ear

The Mass. Eye and Ear/Mass General Department of Ophthalmology is one of the world's premier centers for excellence in ophthalmic clinical care, research and education. Steadfast dedication to an integrated three-part mission keeps the Department at the forefront of advances in patient care and scientific discovery, while training and advancing generations of leaders through our academic and professional development programs. As the seat of Ophthalmology leadership for Harvard Medical School, the Department builds on the strengths of affiliated faculty from such renowned local institutions as Joslin Diabetes Center, Children's Hospital Boston, Schepens Eye Research Institute, Brigham and Women's Hospital, Beth Israel Deaconess Medical Center and Boston Veteran's Administration Healthcare System to encourage innovation and remain a global leader in ophthalmology.

Founded in 1824, Mass. Eye and Ear is an independent specialty hospital, an international center for treatment and research, and a teaching affiliate of the Harvard Medical School.

For more information, call (617) 523-7900 or TDD (617) 523-5498 or visit www.MassEyeAndEar.org.

Mary Leach | EurekAlert!
Further information:
http://www.MassEyeAndEar.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>