Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research in rodents suggests potential for 'in body' muscle regeneration

03.09.2014

What if repairing large segments of damaged muscle tissue was as simple as mobilizing the body's stem cells to the site of the injury? New research in mice and rats, conducted at Wake Forest Baptist Medical Center's Institute for Regenerative Medicine, suggests that "in body" regeneration of muscle tissue might be possible by harnessing the body's natural healing powers.

Reporting online ahead of print in the journal Acta Biomaterialia, the research team demonstrated the ability to recruit stem cells that can form muscle tissue to a small piece of biomaterial, or scaffold that had been implanted in the animals' leg muscle. The secret to success was using proteins involved in cell communication and muscle formation to mobilize the cells.

"Working to leverage the body's own regenerative properties, we designed a muscle-specific scaffolding system that can actively participate in functional tissue regeneration," said Sang Jin Lee, Ph.D., assistant professor of regenerative medicine and senior author. "This is a proof-of-concept study that we hope can one day be applied to human patients."

The current treatment for restoring function when large segments of muscle are injured or removed during tumor surgery is to surgically move a segment of muscle from one part of the body to another. Of course, this reduces function at the donor site.

Several scientific teams are currently working to engineer replacement muscle in the lab by taking small biopsies of muscle tissue, expanding the cells in the lab, and placing them on scaffolds for later implantation. This approach requires a biopsy and the challenge of standardizing the cells.

"Our aim was to bypass the challenges of both of these techniques and to demonstrate the mobilization of muscle cells to a target-specific site for muscle regeneration," said Lee.

Most tissues in the body contain tissue-specific stem cells that are believed to be the "regenerative machinery" responsible for tissue maintenance. It was these cells, known as satellite or progenitor cells, that the scientists wanted to mobilize.

First, the Wake Forest Baptist scientists investigated whether muscle progenitor cells could be mobilized into an implanted scaffold, which basically serves as a "home" for the cells to grow and develop. Scaffolds were implanted in the lower leg muscle of rats and retrieved for examination after several weeks.

Lab testing revealed that the scaffolds contained muscle satellite cells as well as stem cells that could be differentiated into muscle cells in the lab. In addition, the scaffold had developed a network of blood vessels, with mature vessels forming four weeks after implantation.

Next, the scientists tested the effects of several proteins known to be involved in muscle formation by designing the scaffolds to release these proteins. The protein with the greatest effect on cell recruitment was insulin-like growth factor 1 (IGF-1).

After several weeks of implantation, lab testing showed that the scaffolds with IGF-1 had up to four times the number of cells than the plain scaffolds and also had increased formation of muscle fibers.

"The protein effectively promoted cell recruitment and accelerated muscle regeneration," said Lee.

Next, the scientists will evaluate whether the regenerated muscle is able to restore function and will test clinical feasibility in a large animal model.

###

The research was supported by the Armed Forces Institute of Regenerative Medicine, a federally funded effort to apply regenerative medicine to battlefield injuries.

Co-researchers were: Young Min Ju, Ph.D., lead author, Anthony Atala, M.D., and James J. Yoo, M.D., Ph.D., all with the Institute for Regenerative Medicine.

Media Contacts: Karen Richardson, krchrdsn@wakehealth.edu, (336) 716-4453) or Main Number (336) 716-4587.

Wake Forest Baptist Medical Center is a nationally recognized academic medical center in Winston-Salem, N.C., with an integrated enterprise including educational and research facilities, hospitals, clinics, diagnostic centers and other primary and specialty care facilities serving 24 counties in northwest North Carolina and southwest Virginia. Its divisions are Wake Forest Baptist Health, a regional clinical system with close to 175 locations, 900 physicians and 1,000 acute care beds; Wake Forest School of Medicine, an established leader in medical education and research; and Wake Forest Innovations, which promotes the commercialization of research discoveries and operates Wake Forest Innovation Quarter, an urban research and business park specializing in biotechnology, materials science and information technology. Wake Forest Baptist clinical, research and educational programs are annually ranked among the best in the country by U.S. News & World Report.

Karen Richardson | Eurek Alert!

Further reports about: Medical Medicine function progenitor proteins regenerative

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>