Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research may hold key to maintaining embryonic stem cells in lab

13.07.2009
In a new study that could transform embryonic stem cell (ES cell) research, scientists at UT Southwestern Medical Center have discovered why mouse ES cells can be easily grown in a laboratory while other mammalian ES cells are difficult, if not impossible, to maintain.

If the findings in mice can be applied to other animals, scientists could have an entirely new palette of research tools to work with, said Dr. Steven McKnight, chairman of biochemistry at UT Southwestern and senior author of the study appearing in the July 9 issue of Science Express.

"This might change the way medical research is done. But it's still a big 'if,'" he said.

According to the research, the activation of a gene called TDH in mouse ES cells results in the cells entering a unique metabolic state that is similar to that of rapidly growing bacterial cells. The gene controls the production of the threonine dehydrogenase (TDH) enzyme in mouse ES cells. This enzyme breaks down an amino acid called threonine into two products. One of the two products goes on to control a cellular process called one carbon metabolism; the other provides ES cells with an essential metabolic fuel.

Both of the threonine breakdown products are necessary to keep the ES cells growing and dividing rapidly in a petri dish without differentiating into specific tissues.

The various substances currently used by scientists to keep mouse ES cells alive in the laboratory were found by trying many different combinations until something worked, Dr. McKnight said. But until now, it wasn't known that these culture conditions keyed into keeping the TDH gene actively expressed.

"Scientists added this and that until they got the right 'soup,' one that works in the mouse ES cells to somehow activate the TDH gene," he said, adding that exactly how that gene is regulated is still unknown.

Other mammalian species have a functional version of the TDH gene, suggesting the possibility that the process could also be activated in them.

"You would think that the 'mouse soup' would then work for all species, but it doesn't. Researchers have been trying for 20 years to get the right formula for maintaining ES cells from other species. With few exceptions, however, they still haven't gotten it right," Dr. McKnight said.

The research was funded by a National Institutes of Health Director's Pioneer Award, which Dr. McKnight received in 2004. The program encourages investigators to take on creative, unexplored avenues of research that carry a relatively high potential for failure but that also possess a greater chance for truly groundbreaking discoveries.

"By applying a highly innovative technique to manipulate the TDH gene, McKnight's work could be an important breakthrough with a profound impact on future research," said Dr. Raynard S. Kington, acting director of the NIH. "This research, which was partially funded by our Pioneer Award program, shows the value of supporting exceptionally creative approaches to major challenges in biomedical and behavioral research."

Embryonic stem cells are "blank slate" cells – derived from embryos – that go on to develop into any of the more than 200 types of cells in the adult body.

Because mouse ES cells are easily maintained in the lab, they can be manipulated genetically to produce adult mice in which various genes are either modified or eliminated. So-called "knockout mice" allow scientists to study the genetic aspects of many diseases and conditions, including cancer, Alzheimer's, Parkinson's and paralysis.

In the living mouse, and in other species, ES cells exist for only a short time. In that time, they need to grow rapidly in order to accumulate enough cells to begin the process of differentiating into all the body's cell types. Dr. McKnight hypothesizes that the TDH gene tightly controls this process in the animal, allowing the ES cells to grow, but then it shuts off when it's time to differentiate.

"If we can tweak conditions and determine how to keep the gene turned on in other animals, we might be able to grow and maintain ES cells for study in many species. It's still speculative at this point whether it will work, but if it does, then this may prove to represent a transformational discovery," Dr. McKnight said.

Interestingly, although humans carry a form of the TDH gene, it contains three inactivating mutations. As such, human ES cells do not produce the TDH enzyme.

"In the human embryo, something else is taking the place of this TDH-mediated form of rapid cell growth," Dr. McKnight said. "Human ES cells may exist in a unique metabolic state, but it would not appear to involve threonine breakdown."

Human ES cells grow slowly and are difficult to maintain in the laboratory, which is a huge impediment to this field of study, Dr. McKnight said.

"If scientists could repair the mutated human TDH gene and replace it into human ES cells, could they make those cells grow faster in culture? I don't know whether this will work or not – it's highly speculative. But if so, it would be profound," he said.

Other UT Southwestern researchers involved in the study were lead author Dr. Jian Wang, postdoctoral researcher in biochemistry; Peter Alexander, graduate student in biochemistry; Leeju Wu, senior research scientist in biochemistry; Dr. Robert Hammer, professor of biochemistry; and Dr. Ondine Cleaver, assistant professor of molecular biology.

This news release is available on our World Wide Web home page at www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Dr. Steven McKnight -- http://www.utsouthwestern.edu/findfac/professional/0,2356,14812,00.html

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>