Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research finds salt tolerance gene in soybean

12.01.2015

A collaborative research project between Australian and Chinese scientists has shown how soybean can be bred to better tolerate soil salinity.

The researchers, at the University of Adelaide in Australia and the Institute of Crop Sciences in the Chinese Academy of Agricultural Sciences in Beijing, have identified a specific gene in soybean that has great potential for soybean crop improvement.

"Soybean is the fifth largest crop in the world in terms of both crop area planted and amount harvested," says the project's lead, University of Adelaide researcher Associate Professor Matthew Gilliham. "But many commercial crops are sensitive to soil salinity and this can cause major losses to crop yields.

"On top of that, the area of salt-affected agricultural land is rapidly increasing and is predicted to double in the next 35 years. The identification of genes that improve crop salt tolerance will be essential to our efforts to improve global food security."

Professor Lijuan Qiu and Dr Rongxia Guan at the Institute of Crop Sciences pinpointed a candidate salt tolerance gene after examining the genetic sequence of several hundred soybean varieties. Researchers at the ARC Centre of Excellence in Plant Energy Biology at the University of Adelaide's Waite campus then investigated the function of this gene.

"We initially identified the gene by comparing two commercial cultivars," says Professor Qiu. "We were surprised and pleased to see that this gene also conferred salt tolerance in some other commercial cultivars, old domesticated soybean varieties and even wild soybean.

"It appears that this gene was lost when breeding new cultivars of soybean in areas without salinity. This has left many new cultivars susceptible to the rapid increases we are currently seeing in soil salinity around the world."

By identifying the gene, genetic markers can now be used in breeding programs to ensure that salt tolerance can be maintained in future cultivars of soybean that will be grown in areas prone to soil salinity.

"This gene functions in a completely new way from other salt tolerance genes we know about," says Associate Professor Gilliham. "We can now use this information to find similar genes in different crops such as wheat and grapevine, to selectively breed for their enhanced salt tolerance."

###

This research has received support from the Australian Research Council (ARC) and is a feature article in The Plant Journal.

Dr. Matthew Gilliham | EurekAlert!
Further information:
http://www.adelaide.edu.au

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>