Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research finds salt tolerance gene in soybean

12.01.2015

A collaborative research project between Australian and Chinese scientists has shown how soybean can be bred to better tolerate soil salinity.

The researchers, at the University of Adelaide in Australia and the Institute of Crop Sciences in the Chinese Academy of Agricultural Sciences in Beijing, have identified a specific gene in soybean that has great potential for soybean crop improvement.

"Soybean is the fifth largest crop in the world in terms of both crop area planted and amount harvested," says the project's lead, University of Adelaide researcher Associate Professor Matthew Gilliham. "But many commercial crops are sensitive to soil salinity and this can cause major losses to crop yields.

"On top of that, the area of salt-affected agricultural land is rapidly increasing and is predicted to double in the next 35 years. The identification of genes that improve crop salt tolerance will be essential to our efforts to improve global food security."

Professor Lijuan Qiu and Dr Rongxia Guan at the Institute of Crop Sciences pinpointed a candidate salt tolerance gene after examining the genetic sequence of several hundred soybean varieties. Researchers at the ARC Centre of Excellence in Plant Energy Biology at the University of Adelaide's Waite campus then investigated the function of this gene.

"We initially identified the gene by comparing two commercial cultivars," says Professor Qiu. "We were surprised and pleased to see that this gene also conferred salt tolerance in some other commercial cultivars, old domesticated soybean varieties and even wild soybean.

"It appears that this gene was lost when breeding new cultivars of soybean in areas without salinity. This has left many new cultivars susceptible to the rapid increases we are currently seeing in soil salinity around the world."

By identifying the gene, genetic markers can now be used in breeding programs to ensure that salt tolerance can be maintained in future cultivars of soybean that will be grown in areas prone to soil salinity.

"This gene functions in a completely new way from other salt tolerance genes we know about," says Associate Professor Gilliham. "We can now use this information to find similar genes in different crops such as wheat and grapevine, to selectively breed for their enhanced salt tolerance."

###

This research has received support from the Australian Research Council (ARC) and is a feature article in The Plant Journal.

Dr. Matthew Gilliham | EurekAlert!
Further information:
http://www.adelaide.edu.au

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>