Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research constructs ant family tree

22.04.2013
Confirms date of evolutionary origin, underscores importance of Neotropics

Anyone who has spent time in the tropics knows that the diversity of species found there is astounding and the abundance and diversity of ants, in particular, is unparalleled.

Scientists have grappled for centuries to understand why the tropics are home to more species of all kinds than the cooler temperate latitudes on both sides of the equator. Several hypotheses have been proposed to explain the higher species numbers in the tropics, but these hypotheses have never been tested for the ants, which are one of the most ecologically and numerically dominant groups of animals on the planet.

New research by evolutionary biologists Dr. Corrie Moreau of Chicago's Field Museum and Dr. Charles Bell of the University of New Orleans is helping answer these questions. Their findings are presented this week in the journal Evolution.

The scientists used DNA sequence data to build the largest ant tree-of-life to date. This tree-of-life, or family tree of ants, not only allowed them to better understand which ant species are related, but also made it possible to infer the age for modern ants because information from the fossil record in the form of geologic time was included in the research.

This ant tree-of-life confirmed an earlier surprising finding that two groups of pale, eyeless, subterranean ants, which are unlike most typical ants, are the earliest living ancestors of the modern ants. The time calibrated ant tree-of-life showed that the ants found on the planet today can trace their evolutionary origins back to between 139 and158 million years ago – during the time the dinosaurs walked the Earth (a finding in line with previous studies).

But why are there more species of ants in the tropics? To explain this pattern of higher species diversity for many tropical organisms, biologists have used the analogies of the tropics acting as a "museum" or "cradle" for speciation. In the case of the museum analogy, the tropical climates have more species because this is where the oldest groups persist throughout evolutionary time. The converse of this explanation is that the tropics are a cradle where new species are more likely to be generated.

To better understand where on the planet the ants arose and if any single geographic area was more important for their evolutionary origins, Moreau and Bell reconstructed the biogeographic history of the ants. These analyses found that the Neotropics of South America were vital to the deep and continued evolutionary origin of the ants. This finding suggests that for the ants the rainforests of the Neotropics are both a museum, protecting many of the oldest ant groups, and also a cradle that continues to generate new species.

As ants are one of the most ecologically important groups of terrestrial organisms, these findings suggest that protecting the rainforests of the Neotropics are vital to the health and success of both the ants that live in them and all the other animals, plants, fungi, and microbes worldwide that rely on ants to survive.

Interviews and images available upon request.

Nancy O'Shea | EurekAlert!
Further information:
http://www.fieldmuseum.org

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>