Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research Backs Genetic ‘Switches’ in Human Evolution

20.06.2013
A Cornell University study offers further proof that the divergence of humans from chimpanzees some 4 million to 6 million years ago was profoundly influenced by mutations to DNA sequences that play roles in turning genes on and off.

The study, published June 9 in Nature Genetics, provides evidence for a 40-year-old hypothesis that regulation of genes must play an important role in evolution since there is little difference between humans and chimps in the proteins produced by genes. Indeed, human and chimpanzee proteins are more than 99 percent identical.

The researchers showed that the number of evolutionary adaptations to the part of the machinery that regulates genes, called transcription factor binding sites, may be roughly equal to adaptations to the genes themselves.

“This is the most comprehensive and most direct analysis to date of the evolution of gene regulatory sequences in humans,” said senior author Adam Siepel, Cornell associate professor of biological statistics and computational biology.

“It’s taken these 40 years to get a clear picture of what’s going on in these sequences because we haven’t had the data until very recently,” said Leonardo Arbiza, a postdoctoral researcher in Siepel’s lab and the paper’s lead author.

Less than 2 percent of the human genome – the complete set of genetic material – contains genes that code for proteins. In cells, these proteins are instrumental in biological pathways that affect an organism’s health, appearance and behavior.

Much less is known about the remaining 98 percent of the genome; however, in the 1960s, scientists recognized that some of the non-protein coding DNA regulates when and where genes are turned on and off, and how much protein they produce. The regulatory machinery works when proteins called transcription factors bind to specific short sequences of DNA that flank the gene, called transcription factor binding sites, and by doing so, switch genes on and off.

Among the findings, the study reports that when compared with protein coding genes, binding site DNA shows close to three times as many “weakly deleterious mutations,” that is, mutations that may weaken or make an individual more susceptible to disease, but are generally not severe. Weakly deleterious mutations exist in low frequencies in a population and are eventually weeded out over time. These mutations are responsible for many inherited human diseases.

While genes generally tend to resist change, a mutation occasionally leads to a favorable trait and increases across a population; this is called positive selection. By contrast, “transcription factor binding sites show considerable amounts of positive selection,” said Arbiza, with evidence for adaptation in binding sites that regulate genes controlling blood cells, brain function and immunity, among others.

“The overall picture shows more evolutionary flexibility in the binding sites than in protein coding genes,” said Siepel. “This has important implications for how we think about human evolution and disease.”

This is one of the first studies to combine recent data that identifies transcription factor binding sites, data on human genetic variation and genome comparisons between humans and apes. A new computational method called INSIGHT (Inference of Natural Selection from Interspersed Genomically coHerent elemenTs), designed by Ilan Gronau, a postdoctoral researcher in Siepel’s lab and a co-author of the study, allowed the scientists to integrate these diverse data types and find evidence of natural selection in the regulatory DNA.

“Transcription factor binding sites are probably the regulatory elements we know the most about,” said Arbiza. “If you want to understand evolution of gene expression regulation, that’s a good starting point.”

INSIGHT may now be used by other researchers for analyzing other short regulatory DNA sequences, such as micro-RNAs, non-coding molecules that also play a role in gene regulation.

The study was funded by the Packard Foundation, Alfred P. Sloan Foundation, National Science Foundation, National Institutes of Health, and a fellowship from the Cornell Center for Vertebrate Genomics.

Cornell University has television and ISDN radio studios available for media interviews.

John Carberry | Newswise
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>