Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Report on Bioaccumulation and Processing of Antibacterial Ingredient TCC in Fish

01.04.2011
In the first report on the uptake and internal processing of triclocarban (TCC) in fish, scientists today reported strong evidence that TCC — an antibacterial ingredient in some soaps and the source of environmental health concerns because of its potential endocrine-disrupting effects — has a “strong” tendency to bioaccumulate in fish. They presented the findings here today at the 241st National Meeting & Exposition of the American Chemical Society.

Bioaccumulation occurs when fish or other organisms take in a substance faster than their bodies can break it down and eliminate it. If a substance can be bioaccumulated, even minute and seemingly harmless amounts in the water can build up to toxic amounts inside the body.

Ida Flores, who presented the results, pointed out that all existing evidence indicates that TCC does not bioaccumulate in humans and certain other mammals. The human body quickly breaks down, or metabolizes TCC, changing it into other substances that exit the body in urine and feces.

The new study, however, suggests that the situation may be different for fish. They encounter TCC, found mainly in bar soaps, in water that washes down the drain and flows out of sewage treatment facilities into lakes and streams with a small amount of the TCC intact.

Along with a related ingredient called triclosan, TCC has been the source of controversy in recent years. Studies suggested that TCC and triclosan are no better than ordinary soap in preventing the spread of disease, and showed that the two substances have the potential to disrupt the activity of reproductive hormones.

“Due to its widespread usage, TCC is present in small amounts in 60 percent of all rivers and streams in the United States,” said study leader Ida Flores, of the University of California-Davis. “Fish are commonly exposed to TCC, even though much of it is eliminated by wastewater treatment plants.” Despite that widespread distribution in the environment, Flores and colleagues were surprised that only a few studies had investigated TCC’s role in aquatic ecosystems.

“Some of those showed that TCC does accumulate in the environment, and this compelled us to look at the environmental effects of TCC on fish — not simply seeing how it accumulates in fish but also how it is processed and eliminated,” Flores explained.

To find out, they exposed one-week-old larvae of medaka fish, an approach often used in research of endocrine disrupting effects to amounts of TCC similar to those found in natural waterways, and analyzed how the fish metabolized TCC.

“The fish quickly accumulated TCC,” Flores said. “The levels of the TCC in the fish soon after exposure were about 1,000 times higher than the concentration in the water. To the best of our knowledge, this is the first report of uptake and metabolism of TCC in fish species. We found evidence of strong accumulation and also got details on exactly how TCC is metabolized in these animals.”

Flores explained that details of TCC’s metabolism are important because they play a key role in understanding the health and environmental effects of TCC.

“Unmetabolized compounds, such as dioxins, can’t be excreted from the body,” Flores noted. “Those that can be metabolized pose decreased health risks because they can be excreted. Our major concern is accumulation of TCC in the environment and impacts on ecology by its potential endocrine disrupting effects.”

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

Michael Bernstein | Newswise Science News
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>