Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists strike blow in super bugs struggle

06.12.2007
Scientists from The University of Manchester have pioneered new ways of tweaking the molecular structure of antibiotics – an innovation that could be crucial in the fight against powerful super bugs.

The work, led by chemical biologist Dr Jason Micklefield in collaboration with geneticist Professor Colin Smith, is published online today (Wednesday 5 December 2007) and will appear in next issue of the Journal of the American Chemical Society.

Using funding from the UK’s Biotechnology and Biological Sciences Research Council (BBSRC), scientists working in The School of Chemistry and the Manchester Interdisciplinary Biocentre have paved the way for the development of new types of antibiotics capable of fighting increasingly resistant bacteria.

Micklefield, Smith and colleagues were the first to engineer the biosynthesis of lipopeptide antibiotics of this class back in 2002.

They have now developed methodologies for altering the structure of these antibiotics, such as mutating, adding and deleting components.

This innovation provides access to thousands of lipopeptide variants that cannot be produced easily in any other way.

Dr Micklefield said: “The results from this work are essential in the development of the next generation of lipopeptide antibiotics, which are critical to combat emerging super bugs that have acquired resistance to other antibiotics.

“The potent activity of this class of antibiotics against pathogens that are resistant to all current antibiotic treatments makes them one of the most important groups of antibiotics available.

“Our work relies on interdisciplinary chemical-biology, spanning chemistry through to molecular genetics. It follows the tradition of pioneering work in natural product biosynthesis and engineering that has come out of the UK.”

Scientists in Manchester have been doing work on calcium dependant antibiotics (CDA), which belong to the same family of acidic lipopeptides as daptomycin.

In 2003 daptomycin became the first new structural class of natural antibiotic to reach hospitals in more than 30 years.

But researchers say there is already evidence that bacteria are evolving and becoming resistant to daptomycin – leading to the emergence of dangerous new super bugs.

Dr Micklefield added: “If we are to successfully fight and control potent new super bugs in the future, we need to be developing the next generation of antibiotics now.”

The research carried out by Dr Mickelfield and his colleagues is part of a larger £650,000 project called ‘Combinatorial biosynthesis of lipopeptide antibiotics’, which is funded by the BBSRC and supported by drug discovery company Biotica. It is concerned with elucidating and engineering biosynthetic pathways leading to complex nonribosomal lipopeptide antibiotics.

Jon Keighren | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: Micklefield biosynthesis daptomycin lipopeptide

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>