Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The closest look ever at native human tissue

A powerful microscope technique reveals the molecular organisation of skin

Seeing proteins in their natural environment and interactions inside cells has been a long-standing goal. Using an advanced microscopy technique called cryo-electron tomography, researchers from the European Molecular Biology Laboratory [EMBL] have visualised proteins responsible for cell-cell contacts for the first time. In this week’s issue of Nature they publish the first 3D image of human skin at molecular resolution and reveal the molecular Velcro-like organisation that interlinks cells.

“This is a real breakthrough in two respects,” says Achilleas Frangakis, group leader at EMBL. “Never before has it been possible to look in three dimensions at a tissue so close to its native state at such a high resolution. We can now see details at the scale of a few millionths of a millimetre. In this way we have gained a new view on the interactions of molecules that underlie cell adhesion in tissues – a mechanism that has been disputed over decades.”

So far, the only information available about a protein’s position and interactions in a cell was based on either light microscopy images at poor resolution or techniques that remove proteins from their natural context. Frangakis and his group have been developing a technique called cryo-electron tomography, with which a cell or tissue is instantly frozen in its natural state and then examined with an electron micro-scope. Electron microscopy normally requires tissue to be treated with chemicals or coated in metal, a procedure that disturbs the natural state of a sample. With cyro-electron tomography, images are taken of the untreated sample from different directions and assembled into an accurate 3D image by a computer.

The researchers applied this technique to observe proteins that are crucial for the integrity of tissues and organs like the skin and the heart, but also play an important role in cell proliferation. These proteins, called cadherins, are anchored in cell membranes and interact with each other to bring cells close together and interlink them tightly.

“We could see the interaction between two cadherins directly, and this revealed where the strength of human skin comes from,” says Ashraf Al-Amoudi, who carried out the work in Frangakis’ lab. “The trick is that each cadherin binds twice: once to a molecule from the juxtaposed cell, and once to its next-door neighbour. The system works a bit like specialised Velcro and establishes very tight contacts between cells.”

The new insights into the cadherin system broadens the understanding of structural aspects of cell adhesion and shed light on other crucial processes such as cell proliferation. The technical advances achieved in cryo-electron tomography of frozen sections open up new possibilities to study more systems at native conditions with molecular resolution.

Anna-Lynn Wegener
Press Officer
Meyerhofstrasse 1
D-69117 Heidelberg
tel. +49-6221-3878452
fax +49-6221-387525

Anna-Lynn Wegener | EMBL
Further information:

Further reports about: Human Interaction Resolution cadherin native tomography

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>