Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover possible markers for mental illness

04.12.2007
Researchers have discovered natural genetic differences that might help predict the most effective antipsychotic drugs for particular patients with mental disorders such as schizophrenia, Parkinson’s and drug addiction.

They found the differences in the gene for a molecule called the dopamine D2 receptor (DRD2), a protein present on brain cells that are sensitive to the neurotransmitter dopamine.

The receptor is known to play a key role in memory and in a variety of mental illnesses. Most antipsychotic drugs work at least in part by blocking this protein, but scientists don’t yet understand how this helps patients. Nor can they explain why some people respond well to certain antipsychotic drugs and others respond poorly.

“Our study shows that these differences affect normal brain activity and memory processing, and therefore may also be important in mental illness,” says principal investigator Wolfgang Sadee, program director in pharmacogenomics at the Ohio State University Medical Center.

... more about:
»DRD2 »RNA »SNP »Sadee »activity »antipsychotic »differences »markers

The findings could lead to tests that will enable doctors to match patients with certain mental illnesses to the most effective therapy, something they cannot do now.

The study was done in collaboration with Professor Alessandro Bertolino, University of Bari, Italy, who performed the clinical research. It is published online in the Proceedings of the National Academy of Sciences.

“Identifying these predictive markers is important because antipsychotic drugs are effective in only a portion of patients upon first treatment, and it takes a month or more to establish their efficacy,” says Sadee, who is also a professor of psychiatry and chair of the department of pharmacology.

“During this time, irreparable damage can result if the wrong antipsychotic is given to a patient.”

Sadee notes that the D2 receptor gene has been implicated in mental illness for some time, but that a variety of clinical studies have failed to consistently link variations in the gene to disease.

These findings may change that.

For this study, Sadee and his colleagues analyzed 68 autopsy samples of normal human brain tissue. For each case, the researchers measured and compared the amount of messenger RNA made by each of the two copies of the DRD2 gene. Messenger RNA is a molecule made when a gene is involved in making its protein.

In 15 of the 68 cases, the relative amounts of messenger RNA made by one gene in the pair was strikingly different from the amount made by the other. The disparity was a clue that something was different between the genes.

Comparisons of these DRD2 genes to the rest revealed three small differences in the DNA called single-nucleotide polymorphisms, or SNPs (pronounced ‘snips’).

SNPs are tiny natural variations between individuals that occur at certain positions in genes, providing landmarks in the genome.

SNPs often have no effect on the function of the gene or its protein, but, in this case, laboratory experiments showed that particular changes in two of the SNPs alters how the messenger RNA for DRD2 is processed.

That, in turn, changed the relative amounts of two variants of the protein that are made by the gene.

“The two variants of DRD2 have distinct functions, facilitating or inhibiting dopaminergic transmission, so that a change in their ratios is potentially critical,” Sadee says. “We believed that this change would enhance dopamine activity in the brain.”

The researchers then tested this hypothesis in normal human volunteers who took simple memory performance tests. The participants’ brain activity was monitored during the testing by functional magnetic resonance imaging (fMRI).

The results showed that volunteers with the two variant SNPs had significantly more brain activity than the usual SNPs for the same memory task.

“Their brain needed to ‘work’ more to get the same result,” Sadee says. The two SNPs were also associated with reduced memory performance and attentional control.

Sadee and his colleagues are now testing the relevance of the SNP markers in patients with schizophrenia and in patients with cocaine addiction.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: DRD2 RNA SNP Sadee activity antipsychotic differences markers

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>