Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small RNA plays parallel roles in bacterial metabolism

30.11.2007
They are often overlooked, and were once thought to be too small to contribute much to major cellular processes, but in recent years the study of small ribonucleic acids (sRNA) has gained momentum. Now a team from the University of Illinois has identified the unique metabolic activities of one of these bit players, a 200-nucleotide-long RNA molecule in bacteria called SgrS.

This molecule is one of about 80 known small RNAs common to many bacteria. It got its name for its role in sugar metabolism (SgrS is an acronym for sugar-related stress). When a bacterium such as Escherichia coli has taken up enough – or too much – glucose from its surroundings, SgrS helps stop the transport of glucose molecules across the cell membrane, said microbiology professor and principal investigator Carin Vanderpool.

In trying to tease out how SgrS performs this task, Vanderpool and technician Caryn Wadler discovered that the molecule performs dual roles, both of which inhibit the transport of glucose into the cell. One region of the RNA molecule binds to a messenger RNA to inhibit the production of new glucose transporters, while another region codes for a protein that seems to retard the activity of existing transporters.

The findings appear online this month in the Proceedings of the National Academy of Sciences.

... more about:
»Glucose »RNA »SgrS »Vanderpool »bacterial

“The most novel thing about this discovery is that this molecule seems to be truly bi-functional in that the two functions it performs participate in the same stress response,” Vanderpool said.

One other small RNA, a 500-nucleotide molecule that regulates virulence genes in Staphylococcus aureus bacteria, was previously found to encode a protein, Vanderpool said, but the activity of that protein did not participate in the regulation.

The two regions of the molecule were apparently engaged in unrelated tasks.

Some glucose is obviously good, since the bacteria use it to make essential cell molecules and to provide energy. However, excess glucose in bacterial cells interferes with vital functions, Vanderpool said, so the SgrS response is essential to bacterial survival. A deeper understanding of how bacteria defend themselves from metabolic stresses such as excess glucose could lead to important therapeutic innovations, she said.

Vanderpool hopes that more researchers will explore the multifunctional potential of these diminutive molecules.

“Don’t overlook them just because they’re short,” she said.
To view or subscribe to the RSS feed for Science News at Illinois, please go to: http://webtools.uiuc.edu/rssManager/608/rss.xml.

Diana Yates | University of Illinois
Further information:
http://www.uiuc.edu

Further reports about: Glucose RNA SgrS Vanderpool bacterial

More articles from Life Sciences:

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

nachricht Researchers discover specific tumor environment that triggers cells to metastasize
22.11.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

New discovery: Common jellyfish is actually two species

22.11.2017 | Life Sciences

Researchers discover specific tumor environment that triggers cells to metastasize

22.11.2017 | Life Sciences

A material with promising properties

22.11.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>