Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Role Of Phytochromes In Bacteria Revealed

13.05.2002


A research team jointly involving the IRD, the CEA and the CNRS has very recently found phytochromes in a strain of nitrogen-fixing bacterium, Bradyrhizobium (1), symbiont on certain tropical leguminous plants (the Aeschynomene). Techniques of molecular biology, biophysics and biochemistry revealed that the newly-discovered phytochrome has an essential role as regulator of the bacterium’s photosystem synthesis. An identical function was shown in the photosynthetic bacterium Rhodopseudomonas palustris, phylogenetically very close to Bradyrhizobium (2).



The researchers experimented by subjecting Bradyrhizobium cells to different wavelengths of light, from the red to the infrared. It appeared that the bacterial photosynthetic apparatus was synthesized in its complete form only when the phytochrome was in its active (far-red-light absorbing) configuration (3). In addition, they used genetic engineering techniques to make bacterial strains in which the gene coding for the phytochrome was suppressed. These strains showed practically no photosynthetic activity whatever the culture conditions. These experiments therefore demonstrated that the photosystem of Bradyrhizobium is totally under the control of the bacteriophytochrome. This is the first time that any definite role has been determined for phytochromes in bacteria.
Another positive result was the determination of the main action mechanisms of the phytochrome in these bacteria. The gene adjacent to that of the phytochrome encodes a protein (called transcriptional factor “ PpsR ”) already known to repress the expression of some photosynthetic genes (4). The team demonstrated that when in its active form under infrared light, the phytochrome interacts with this protein and stops its repressive action. The genes which encode the bacteria’s photosynthetic apparatus can then express themselves. In this way, the light signal transduction the phytochrome ensures in the bacterial cells would occur by direct interaction with PpsR, meaning a direct protein-protein interaction mechanism and not the induction of a biochemical reaction (phosphorelay) cascade, which has been the theory up to now. The researchers used these observations to devise a model for gene expression control by light. A patent has been filed for this model which could be useful as a new research tool in molecular biology (5).

The crucial question here is why these bacteria of the Bradyrhizobium genus should be equipped with phytochromes whereas other photosynthetic bacteria (Rhodobacter, Rubrivivax or Rhodospirillum) analysed by the IRD, the CEA and the CNRS have none. The hypothesis the researchers advance is that the phytochrome’s photosynthesis control system could represent a function-based ecological adaptation that allows interaction between the bacterium and the leguminous plant on which the bacterium is developing. The Bradyrhizobium bacterium can implant itself along stems under a layer of chlorophyllous cells which let through only infrared wavelengths Thus, the phytochrome enables the bacterium to install its photosynthetic apparatus. That will then supply part of its energy requirement for maintaining its symbiosis with the leguminous plant and fixing the nitrogen essential for the plant’s growth.



The study of phytochromes in photosynthetic bacteria could in the long term bring a better understanding of the operational mechanisms of these light sensors in plants. Rhodopseudomonas palustris, the other bacterium studied by the IRD, the CEA and the CNRS, is a particularly suitable model for analysing phytochrome function in general. The entire genome of this bacterium has recently been sequenced and shown to contain six different copies of phytochromes, which is exceptional.


(1) In other words, they use light as an energy source both for their own growth and to enable the symbiosis with the leguminous plants to operate and fix the nitrogen these plants need for their development.
(2) R. palustris is known to microbiologists as one of the most versatile bacteria, capable of adapting its metabolism to highly varied environmental conditions.
(3) Most bacterial phytochromes so far identified are active under infrared light, unlike plant phytochromes which sensitive to red light.
(4) This protein, termed PpsR, has been isolated from several other micro-organisms. It recognizes a particular region of DNA upstream of the gene it controls. The protein fixes on this region, thus preventing the passage of RNA polymerase and blocking transcription.
(5) See the press release issued jointly by CEA/CNRS/IRD.

Marie-Lise Sabrie | alphagalileo
Further information:
http://www.ird.fr

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>