Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Role Of Phytochromes In Bacteria Revealed

13.05.2002


A research team jointly involving the IRD, the CEA and the CNRS has very recently found phytochromes in a strain of nitrogen-fixing bacterium, Bradyrhizobium (1), symbiont on certain tropical leguminous plants (the Aeschynomene). Techniques of molecular biology, biophysics and biochemistry revealed that the newly-discovered phytochrome has an essential role as regulator of the bacterium’s photosystem synthesis. An identical function was shown in the photosynthetic bacterium Rhodopseudomonas palustris, phylogenetically very close to Bradyrhizobium (2).



The researchers experimented by subjecting Bradyrhizobium cells to different wavelengths of light, from the red to the infrared. It appeared that the bacterial photosynthetic apparatus was synthesized in its complete form only when the phytochrome was in its active (far-red-light absorbing) configuration (3). In addition, they used genetic engineering techniques to make bacterial strains in which the gene coding for the phytochrome was suppressed. These strains showed practically no photosynthetic activity whatever the culture conditions. These experiments therefore demonstrated that the photosystem of Bradyrhizobium is totally under the control of the bacteriophytochrome. This is the first time that any definite role has been determined for phytochromes in bacteria.
Another positive result was the determination of the main action mechanisms of the phytochrome in these bacteria. The gene adjacent to that of the phytochrome encodes a protein (called transcriptional factor “ PpsR ”) already known to repress the expression of some photosynthetic genes (4). The team demonstrated that when in its active form under infrared light, the phytochrome interacts with this protein and stops its repressive action. The genes which encode the bacteria’s photosynthetic apparatus can then express themselves. In this way, the light signal transduction the phytochrome ensures in the bacterial cells would occur by direct interaction with PpsR, meaning a direct protein-protein interaction mechanism and not the induction of a biochemical reaction (phosphorelay) cascade, which has been the theory up to now. The researchers used these observations to devise a model for gene expression control by light. A patent has been filed for this model which could be useful as a new research tool in molecular biology (5).

The crucial question here is why these bacteria of the Bradyrhizobium genus should be equipped with phytochromes whereas other photosynthetic bacteria (Rhodobacter, Rubrivivax or Rhodospirillum) analysed by the IRD, the CEA and the CNRS have none. The hypothesis the researchers advance is that the phytochrome’s photosynthesis control system could represent a function-based ecological adaptation that allows interaction between the bacterium and the leguminous plant on which the bacterium is developing. The Bradyrhizobium bacterium can implant itself along stems under a layer of chlorophyllous cells which let through only infrared wavelengths Thus, the phytochrome enables the bacterium to install its photosynthetic apparatus. That will then supply part of its energy requirement for maintaining its symbiosis with the leguminous plant and fixing the nitrogen essential for the plant’s growth.



The study of phytochromes in photosynthetic bacteria could in the long term bring a better understanding of the operational mechanisms of these light sensors in plants. Rhodopseudomonas palustris, the other bacterium studied by the IRD, the CEA and the CNRS, is a particularly suitable model for analysing phytochrome function in general. The entire genome of this bacterium has recently been sequenced and shown to contain six different copies of phytochromes, which is exceptional.


(1) In other words, they use light as an energy source both for their own growth and to enable the symbiosis with the leguminous plants to operate and fix the nitrogen these plants need for their development.
(2) R. palustris is known to microbiologists as one of the most versatile bacteria, capable of adapting its metabolism to highly varied environmental conditions.
(3) Most bacterial phytochromes so far identified are active under infrared light, unlike plant phytochromes which sensitive to red light.
(4) This protein, termed PpsR, has been isolated from several other micro-organisms. It recognizes a particular region of DNA upstream of the gene it controls. The protein fixes on this region, thus preventing the passage of RNA polymerase and blocking transcription.
(5) See the press release issued jointly by CEA/CNRS/IRD.

Marie-Lise Sabrie | alphagalileo
Further information:
http://www.ird.fr

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>