Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In Embryonic Stem Cells gene inactivation can have a totally new meaning

26.11.2007
Embryonic stem cells (ESC) can both self-renew or differentiate into the many cells of the organism and it is crucial to understand the mechanism behind this capability if we want to use them in clinic.

Developmental regulator genes are responsible for the activation of many ESC differentiation-pathways and, as such, they are a fundamental key to understand them. And now, research about to be published in Nature Cell Biology, reveals that these genes -always believed to be inactive in ESC before differentiation start - when apparently silent (non-active) are in fact poised, already on the first steps of gene activation only unable to go further due to the presence of repressor molecules.

These results challenge the widespread paradigm that silent genes are hidden inside “balls” of compact DNA so to escape erroneous activation, opening the door to totally new approaches for stem cells’ gene manipulation. The work also reveals how ESC development is particularly plastic with the undifferentiated cells lurking in an active/inactive state, ready to differentiate very quickly in response to the environment. Finally, the research can also have implications for the creation of stem cells from already differentiate cells since these poised genes also seem to exist in the latter group.

Embryonic stem cells are pluripotents, as they are capable of originate all the body’s cells. This is done through complex genetic programs, in which some genes are activated while others suppressed depending on the cell type and function although not much is known about the mechanisms by how this is achieved. A key element to this is to understand how “developmental regulator genes” – which are responsible for initiating ESC differentiation - are repressed before this happens while remaining ready to be rapidly activated as soon as the cell fate is determined. A clue came from recent research, which uncovered that regulator genes when silent in stem cells have, nevertheless, molecules associated with activation attached to them (in addition to repressor molecules), a characteristic that earned them the label “bivalent”.

In fact, the prevalent paradigm says that when our genes - except for a few exceptions - when not in use are hidden away inside compacted DNA protecting them from being incorrectly turned on. Only when they are to be activated will the molecule of DNA unfold, allowing access to the cellular machinery necessary for gene expression (gene expression occurs in two stages - first, DNA is copied into a RNA molecule in a process called transcription, and then this RNA is “read”, providing instructions for the production of proteins (DNA – RNA – protein).

When the observation that silent developmental regulator genes were bivalent came out, Julie K. Stock, Ana Pombo and colleagues working at Imperial College London, the CSIC, Madrid and the RIKEN Yokohama Institute in Japan wondered if these genes were really inactive or something else was occurring.

To look into this question the researchers decided to investigate the presence of RNA polymerase (RNAP) in these genes. RNAP is the enzyme – enzymes are proteins that facilitate biochemical reactions – that mediate transcription (the first step of gene expression) and, as such, its presence is a good marker for gene activation. Furthermore, RNAP can bind phosphate groups (becoming phosphorylated) in different parts of its molecule and these different RNAP forms are associated with distinct stages of transcription. For instance Ser5P (in which RNAP is phosphorylated at serine- 5) is associated with the beginning of gene activation, while Ser2P (where RNAP is phosphorylated at Serine-2) is linked to RNA elongation, a later stage than the one associated with Ser5P. This means that by looking into the amounts of different RNAP forms it is possible to understand in which part of the transcription process - if at all - the cells are found.

When Stock, Pombo and colleagues tested for different RNAP forms it was discovered that in bivalent developmental regulator genes not only there was RNAP - despite the fact that the gene was silent - but also that the DNA was open (so not in a compact mass) and being transcribed, although probably without forming full RNA molecules since there was almost no Ser2P to conclude the process.

In conclusion, developmental regulator genes in ESC when apparently silent, are, instead, “stuck” in the first steps of transcription, poised to be fully activated.

And Ana Pombo - a Portuguese scientist and the team leader – thinks this might be advantageous: “We think that the presence of RNAP at developmental regulator genes in this unusual conformation, poised to go, might allow for a better coordination of the different players during early differentiation, making the process more robust and efficient”.

The next question was how could these “poised” genes be kept safe from being wrongly activated all the time then? To answer that, Stock, Pombo and colleagues removed one repressor molecule, called Ring1, which is found attached to bivalent genes and found that they were now active. As consequence, ESC started differentiating confirming that this suppressor molecule was inhibiting transcription. However, although these genes showed now increased quantities of non-phosphorylated RNAP, both Ser2P and Ser5P levels were much the same as those found when they were silent in non-differentiating ESC, suggesting that gene activation/RNA transcription, after removal of the suppressor molecule, was occurring through an alternative and yet unknown path that did not use Ser2P.

Stock, Pombo and colleagues’ research has several implications for the understanding of ESC, starting by this unusual mechanism of RNA transcription (that does not seem to use Ser2P) present at ESC developmental regulator genes, which, if found to be unique to these genes, could be related to ESC exceptional characteristics.

Furthermore, recent research in human cells has just discovered that bivalent genes (those with activation and repression markers) are much more common that previously thought, comprising as much as 75% of all silent genes, both in stem and mature specialized cells. If Stock, Pombo and colleagues’ “poised” RNAP is also present in them this contradicts the paradigm of silent genes being kept inside compacted DNA and opens a new, exciting door in the study of gene expression/activation.

In fact, when, in different tissues and organs, some genes are turned on while others remain silent in order to create mature specialised cells, it is believed that in most cases this gene silencing is irreversible. Instead, the widespread existence of bivalent genes together with Pombo and colleagues’ results seem to indicate that silent genes are much more plastic/ flexible than previously thought as they are kept in an active/inactive state that allows a better response to environmental or developmental triggers. Even more exciting is the fact that this “non-committed” condition might mean that silent genes can revert to an active state more easily than previous thought, what can be crucial if we want to create pluripotent stem cells from mature differentiated cells.

Stock, Pombo and colleagues’ results are a small step in our knowledge of ESC but one full of possibilities, undoubtedly putting us closer to one day being able to develop stem cells therapies to replace damaged or diseased tissues and organs, or even grow stem cells outside of the body to order, that ultimate Holly Grail of stem cells clinical applications.

Piece researched and written by Catarina Amorim ( catarina.amorim at linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www.nature.com/ncb/index.html

Further reports about: DNA Developmental ESC Pombo Presence RNA RNAP Ser2P activation bivalent colleagues’ differentiate poised transcription

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>