Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Poxvirus' ability to hide from the immune system may aid vaccine design

19.11.2007
The cowpox virus, a much milder cousin of the deadly smallpox virus, can keep infected host cells from warning the immune system that they have been compromised, researchers at Washington University School of Medicine in St. Louis have found. The scientists also showed that more virulent poxviruses, such as the strains of monkeypox prevalent in Central Africa, likely have the same ability.

The study's authors say the finding will help efforts to design new vaccines for use against cowpox, monkeypox and, if it ever became a concern again, smallpox. Researchers working on the next generation of poxvirus vaccines are hoping to minimize the risk of vaccination and to make the vaccines protective against a broader range of viruses.

"Poxvirus vaccines are cross-protective, meaning that immunization from one poxvirus appears to confer protection from other poxviruses, but there are significant risks associated with adult administration of the current vaccine," says senior author Wayne Yokoyama, M.D., professor of pathology and immunology and of medicine and a Howard Hughes Medical Institute investigator. "There are also efforts underway to see if recombinant poxvirus vaccines can convey protection against a broader range of viruses, including HIV and cytomegalovirus."

In addition, the finding is likely to help scientists understand why one strain of poxvirus is more dangerous than another. The results appear Nov. 15 in Cell Host and Microbe.

Three decades ago, doctors eliminated the deadliest poxvirus, smallpox, using another poxvirus, vaccinia, as a vaccine. But a few smallpox samples remain in government facilities in the United States and Russia, and those samples have led to concern that terrorists might try to obtain smallpox and use it in a bioterror attack.

Additionally, other species of poxvirus continue to be sources of human disease and, occasionally, deaths. Outbreaks of cowpox, which Edward Jenner used to demonstrate the concept of vaccination in the late 1700s, still occur. In addition, multiple outbreaks of the monkeypox virus, which can cause smallpox-like disease in humans, have occurred in Africa and the United States in the past decade.

To help clinicians better prepare for the possibility of a new natural poxvirus outbreak or a bioterror attack using a poxvirus, Minji Byun, a graduate student in Yokoyama's laboratory, led a laboratory study of interactions between the cowpox virus and the immune systems of mice. Byun collaborated with Xiaoli Wang, M.D., Ph.D., instructor in the laboratory of Ted Hansen, Ph.D., professor in the Department of Pathology and Immunology. The research was supported in part by the Midwest Regional Center of Excellence in Biodefense and Emerging Infectious Diseases Research (MRCE), a multi-institutional research center anchored at Washington University School of Medicine.

Normally the immune system in mice and humans can learn of a viral invasion through a group of molecules known as the major histocompatibility complex (MHC) class I. Because these molecules sit on the surfaces of cells and display samples of proteins from inside the cells, they act as identification badges, in effect telling immune system sentinels, "here's what I'm made of." When immune T cells see virus-derived protein fragments in a cell's MHC class I display, they assume it's been infected and initiate an immune system attack.

But Byun and her colleagues found that cowpox was preventing MHC class I from ever getting to the surface of infected cells. They linked the suppression to a cowpox virus protein, CPXV203, showing that it binds to MHC class I. This binding yanks MHC class I off course by targeting it to the cellular recycling machinery. Once in the recycling loop, MHC class I cannot escape to the cell surface.

"Other viruses have similar strategies for immune system evasion, but this is the first study showing that the poxviruses that are most closely related to smallpox virus can use this approach," says Byun.

A search of the genomes of monkeypox virus revealed a similar protein in the more virulent family of virus strains found in Central Africa. But the less virulent strains active in Western Africa tend to have truncated versions of the proteins similar to CPXV203, leaving them unable to act on MHC class I.

When researchers eliminated the CPXV203 gene and infected mouse cells with the modified cowpox virus, they found it still was able to suppress the appearance of MHC class I on infected cell surfaces, but not as thoroughly.

"There's likely another viral mechanism that produces the same result," Byun speculates. "But it has to be acting on MHC class I in a different way because a search through the cowpox genome failed to reveal any other viral proteins with the same key module as CPXV203."

Pharmaceutically blocking CPXV203 and other similar immune evasion proteins may be tough, according to Yokoyama, because that would disrupt an important natural protein recycling process, potentially causing significant side effects. He believes the finding is more likely to be useful to vaccine scientists. Many vaccines are composed of weakened forms of the microbes they protect against, and the modified cowpox lacking CPXV203 is likely less virulent.

Yokoyama plans additional studies of poxvirus-immune system interaction in live mice.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: Vaccine cowpox immune immune system monkeypox poxvirus smallpox

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>