Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Poxvirus' ability to hide from the immune system may aid vaccine design

19.11.2007
The cowpox virus, a much milder cousin of the deadly smallpox virus, can keep infected host cells from warning the immune system that they have been compromised, researchers at Washington University School of Medicine in St. Louis have found. The scientists also showed that more virulent poxviruses, such as the strains of monkeypox prevalent in Central Africa, likely have the same ability.

The study's authors say the finding will help efforts to design new vaccines for use against cowpox, monkeypox and, if it ever became a concern again, smallpox. Researchers working on the next generation of poxvirus vaccines are hoping to minimize the risk of vaccination and to make the vaccines protective against a broader range of viruses.

"Poxvirus vaccines are cross-protective, meaning that immunization from one poxvirus appears to confer protection from other poxviruses, but there are significant risks associated with adult administration of the current vaccine," says senior author Wayne Yokoyama, M.D., professor of pathology and immunology and of medicine and a Howard Hughes Medical Institute investigator. "There are also efforts underway to see if recombinant poxvirus vaccines can convey protection against a broader range of viruses, including HIV and cytomegalovirus."

In addition, the finding is likely to help scientists understand why one strain of poxvirus is more dangerous than another. The results appear Nov. 15 in Cell Host and Microbe.

Three decades ago, doctors eliminated the deadliest poxvirus, smallpox, using another poxvirus, vaccinia, as a vaccine. But a few smallpox samples remain in government facilities in the United States and Russia, and those samples have led to concern that terrorists might try to obtain smallpox and use it in a bioterror attack.

Additionally, other species of poxvirus continue to be sources of human disease and, occasionally, deaths. Outbreaks of cowpox, which Edward Jenner used to demonstrate the concept of vaccination in the late 1700s, still occur. In addition, multiple outbreaks of the monkeypox virus, which can cause smallpox-like disease in humans, have occurred in Africa and the United States in the past decade.

To help clinicians better prepare for the possibility of a new natural poxvirus outbreak or a bioterror attack using a poxvirus, Minji Byun, a graduate student in Yokoyama's laboratory, led a laboratory study of interactions between the cowpox virus and the immune systems of mice. Byun collaborated with Xiaoli Wang, M.D., Ph.D., instructor in the laboratory of Ted Hansen, Ph.D., professor in the Department of Pathology and Immunology. The research was supported in part by the Midwest Regional Center of Excellence in Biodefense and Emerging Infectious Diseases Research (MRCE), a multi-institutional research center anchored at Washington University School of Medicine.

Normally the immune system in mice and humans can learn of a viral invasion through a group of molecules known as the major histocompatibility complex (MHC) class I. Because these molecules sit on the surfaces of cells and display samples of proteins from inside the cells, they act as identification badges, in effect telling immune system sentinels, "here's what I'm made of." When immune T cells see virus-derived protein fragments in a cell's MHC class I display, they assume it's been infected and initiate an immune system attack.

But Byun and her colleagues found that cowpox was preventing MHC class I from ever getting to the surface of infected cells. They linked the suppression to a cowpox virus protein, CPXV203, showing that it binds to MHC class I. This binding yanks MHC class I off course by targeting it to the cellular recycling machinery. Once in the recycling loop, MHC class I cannot escape to the cell surface.

"Other viruses have similar strategies for immune system evasion, but this is the first study showing that the poxviruses that are most closely related to smallpox virus can use this approach," says Byun.

A search of the genomes of monkeypox virus revealed a similar protein in the more virulent family of virus strains found in Central Africa. But the less virulent strains active in Western Africa tend to have truncated versions of the proteins similar to CPXV203, leaving them unable to act on MHC class I.

When researchers eliminated the CPXV203 gene and infected mouse cells with the modified cowpox virus, they found it still was able to suppress the appearance of MHC class I on infected cell surfaces, but not as thoroughly.

"There's likely another viral mechanism that produces the same result," Byun speculates. "But it has to be acting on MHC class I in a different way because a search through the cowpox genome failed to reveal any other viral proteins with the same key module as CPXV203."

Pharmaceutically blocking CPXV203 and other similar immune evasion proteins may be tough, according to Yokoyama, because that would disrupt an important natural protein recycling process, potentially causing significant side effects. He believes the finding is more likely to be useful to vaccine scientists. Many vaccines are composed of weakened forms of the microbes they protect against, and the modified cowpox lacking CPXV203 is likely less virulent.

Yokoyama plans additional studies of poxvirus-immune system interaction in live mice.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: Vaccine cowpox immune immune system monkeypox poxvirus smallpox

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>