Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Together We Stand: Bacteria Organize to Survive Hostile Zones

19.11.2007
Microfluidic Device May Reveal Ways to Fight Antibiotic-Resistant Biofilms

Using an innovative device with microscopic chambers, researchers from four institutions, including Johns Hopkins, have gleaned important new information about how bacteria survive in hostile environments by forming antibiotic- resistant communities called biofilms. These biofilms play key roles in cystic fibrosis, urinary tract infections and other illnesses, and the researchers say their findings could help in the development of new treatments and preventive measures.

"There is a perception that single-celled organisms are asocial, but that is misguided," said Andre Levchenko, assistant professor of biomedical engineering in The Johns Hopkins University's Whiting School of Engineering and an affiliate of the university's Institute for NanoBioTechnology. "When bacteria are under stress which is the story of their lives they team up and form this collective called a biofilm. If you look at naturally occurring biofilms, they have very complicated architecture. They are like cities with channels for nutrients to go in and waste to go out."

With a better understanding of how and why bacteria form biofilms, researchers may be able to disrupt activity in the bacterial communities and block harmful effects on their human hosts. The team's findings were detailed in an article published in the November 2007 issue of the journal Public Library of Science Biology.

... more about:
»bacteria »resistance

In the article, the researchers from Johns Hopkins; Virginia Tech; the University of California, San Diego; and Lund University in Sweden reported on the observation of the bacteria E. coli growing in the cramped conditions of a new microfluidic device. The device, which allows scientists to use nanoscale volumes of cells in solution, contains a series of tiny chambers of various shapes and sizes that keep the bacteria uniformly suspended in a culture medium.

Levchenko and his colleagues recorded the behavior of single layers of cells using real-time microscopy. Computational models validated their experimental results and could predict the behavior of other bacterial species under similar pressures. "We were surprised to find that cells growing in chambers of all sorts of shapes gradually organized themselves into highly regular structures," Levchenko said. "The computational model helped explain why this was happening and how it might be used by the cells to increase chances of survival."

The microfluidic device, which was designed and fabricated in collaboration with Alex Groisman's laboratory at UCSD, allows the cells to flow freely into and out of the chambers. Test volumes in the chambers were in the nano- liter range, allowing visualization of single E. coli cells. Ann Stevens' laboratory at Virginia Tech helped to generate new strains of bacteria that permitted visualization of individual cells grown in a single layer.

Hojung Cho, a Johns Hopkins biomedical engineering doctoral student from Levchenko's lab and lead author of the journal article, captured on video the gradual self- organization and eventual construction of bacterial biofilms over a 24-hour period, using real-time microscopy techniques. The experiments were matched to modeling analysis developed in collaboration with Cho's colleagues at Lund. Images were analyzed using tools developed with the participation of Bruno Jedynak of the Johns Hopkins Center for Imaging Science.

Observation using microscopy revealed that the longer the packed cell population resided in the chambers, the more ordered the biofilm structure became, Levchenko said. Being highly packed in a tiny space can be very challenging for cells, so that any type of a strategy to help colony survival can be very important, he adds.

Levchenko also noted that rod-shaped E. coli that were too short or too long typically either did not organize well or did not avoid "stampede-like" blockages toward the exits. The shape of the confining space also strongly affected the cell organization in a colony, with highly disordered groups of cells found at sharp corners but not in the circular shaped microchambers.

Understanding how bacteria produce biofilms is important to researchers developing better ways to combat the diseases associated with them, Levchenko pointed out. For example, people who suffer from cystic fibrosis a genetic disorder that affects the mucus lining of the lungs are susceptible to a species of bacteria that colonizes the lungs. Patients choke on the colony's byproducts. Chronic urinary tract infections result from bacterial communities that develop inside human cells. And biofilms cause problems in tissues where catheters have been inserted or where sutures have been used.

"You can put a patient on antibiotics, and it may seem that the infection has disappeared. But in a few months, it reappears, and it is usually in an antibiotic-resistant form," Levchenko says. To explore possible treatments, Levchenko said, the microfluidic device could be used as a tool to rapidly and simultaneously screen different types of drugs for their ability to prevent biofilms.

This research was supported by funding from the National Science Foundation, the National Institutes of Health and the Swedish Research Council.

Mary Spiro | EurekAlert!
Further information:
http://www.jhu.edu

Further reports about: bacteria resistance

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>