Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smac-ing lung cancer to death

14.11.2007
Howard Hughes Medical Institute researchers have developed a small molecule that can turn the survival signal for a variety of cancer cells into a death signal. The molecule mimics the activity of Smac, a protein that triggers the suicide of some types of cancer cells.

The researchers say their findings suggest that Smac-mimetic compounds could be useful as targeted cancer treatments for lung and other cancers. Such therapy may be less toxic to healthy cells than current compounds used in cancer chemotherapy.

The researchers, led by Howard Hughes Medical Institute investigator Xiaodong Wang, published their findings in the November, 2007, issue of the journal Cancer Cell. Wang is at the University of Texas Southwestern Medical Center.

Cells that are defective or that become unnecessary during growth and development are induced to commit suicide through a finely balanced process known as apoptosis, or programmed cell death. A protein called Smac, which is a shortened version of “second mitochondria-derived activator of apoptosis,” is a part of the cell’s programmed cell death machinery. When that machinery is switched on, Smac is released from the mitochondria and triggers the pathway that kills damaged or abnormal cells. Cancer cells, however, can survive Smac’s death signal by switching off the apoptotic machinery.

... more about:
»Cancer »Smac »apoptosis »death »lung

To see if they could get around this problem, Wang and other researchers have developed small-molecule mimetics of Smac that can enter the cell and trigger apoptosis. These mimetic molecules do their damage without the need for the Smac signal from the mitochondria. In earlier studies, Wang and his colleagues found that a Smac mimetic that they developed in the lab could kill cancer cells in culture. But they found that the cancer cells are only killed when the mimetic molecule is introduced in conjunction with another component of the apoptotic machinery known as TNFá.

In the new studies published in Cancer Cell, Wang and his colleagues found that a significant percentage of human non-small-cell lung cancer cell lines were sensitive to treatment by the Smac mimetic alone. When the researchers introduced those sensitive cells into mice and allowed them to produce tumors, they found that the Smac mimetic caused the tumors to regress and, in some cases, even disappear.

“These findings made us wonder what it was about these cell lines that made them sensitive to the Smac mimetic alone,” said Wang. “Cancer cells are hard to kill, but these cell lines seemed to have already become sensitized to apoptosis.”

The researchers’ studies revealed that the sensitive cell lines produced their own TNFá, so they were already “primed” for apoptosis. The paradox, said Wang, is that TNFá signaling is also part of a complex pathway that gives cancer cells a “survival” signal, offering them a growth advantage. The researchers also found that some breast cancer and melanoma cell lines were sensitive to the Smac mimetic alone.

“Thus, in these cancer cell lines, the TNFá survival advantage turns out to be a fatal flaw, because the same pathway can be switched to apoptosis by Smac mimetics,” said Wang. “So, for some cancers, we might be able to use Smac mimetics as a single treatment agent. And we can use the presence of TNFá as a marker to tell us which tumors will respond to the Smac mimetic alone.”

“People have been suspecting for a long time that some cancer cells may somehow turn on their apoptotic pathway already,” said Wang. “And now we know what pathway they turn on and why. We can take advantage of this phenomenon for potential cancer therapy by switching a signal into a deadly one with Smac mimetics.”

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

Further reports about: Cancer Smac apoptosis death lung

More articles from Life Sciences:

nachricht Multifunctional Platform for the Delivery of Gene Therapeutics
22.01.2018 | Angewandte Chemie International Edition

nachricht Charge Order and Electron Localization in a Molecule-Based Solid
22.01.2018 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Multifunctional Platform for the Delivery of Gene Therapeutics

22.01.2018 | Life Sciences

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>