Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic technology reveals how poisonous mushrooms cook up toxins

14.11.2007
Heather Hallen spent eight years looking for poison in all the wrong places.

Alpha-amanitin is the poison of the death cap mushroom, Amanita phalloides. The Michigan State University plant biology research associate was looking for a big gene that makes a big enzyme that produces alpha-amanitin, since that’s how other fungi produce similar compounds. But after years of defeat, she and her team called in the big guns – new technology that sequences DNA about as fast as a death cap mushroom can kill.

The results: The discovery of remarkably small genes that produce the toxin – a unique pathway previously unknown in fungi.

The discovery is reported in today’s Proceedings of the National Academy of Sciences. It is work that not only solves a mystery of how some mushrooms make the toxin – but also sheds light on the underlying biochemical machinery. It might be possible one day to harness the mushroom genes to make novel chemicals that would be useful as new drugs.

... more about:
»DNA »Toxin »mushroom »poisonous »sequence

“We think we have a factory that spits out lots of little sequences to make chemicals in Amanita mushrooms,” said Jonathan Walton, MSU plant biology professor who leads Hallen’s team. “Our work indicates that these mushrooms have evolved a mechanism to make dozens or even hundreds of new, previously unknown chemicals, besides the toxins that we know about.”

Of the thousands of species of mushrooms, only about 30 produce alpha-amanitin. Most of them look much like their edible cousins. But poisonous mushrooms are powerful in folklore and in history. In 54 A.D., Emperor Tiberius Claudius was fed a death cap mushroom by his wife Agrippina to put her son Nero on the throne of Rome.

Alpha-amanitin kills people by inhibiting an enzyme necessary for expression of most genes. Without the ability to synthesize new proteins, cells quickly grind to a halt. The intestinal tract and the liver are the hardest hit as they come into first contact with the toxin. By the time symptoms show up, a liver transplant is often the only hope.

Hallen, a mycologist, gathers mushrooms in the Michigan woods and often is called upon to help identify mushroom species for veterinarians, parents of small children and local hospitals – often in a desperate race to beat alpha-amanitin’s effects.

Walton’s lab works to understand the biochemical pathways by which natural products are synthesized in fungi. Fungal natural products that benefit human health include penicillin and the immunosuppressant drug cyclosporin. Studying their biosynthesis could lead to the discovery and development of new medicines.

To find the elusive gene for alpha-amanitin, they used what they term “brute force” – a new machine at MSU that can sequence immense quantities of DNA quickly. The 454 LifeSciences pyrosequencer generates 100 Mb DNA sequence in one overnight run - twice the size of a fungal genome. Traditional sequencing methods require months to yield the same quantities. What they found was a gene that encodes the toxin directly – with no need to first synthesize an enzyme that in turn would make the toxin.

“The RNA goes in, and out comes the backbone of the toxin,” Hallen said. After its initial synthesis, the toxin is then modified in several ways by the mushroom to make it exceptionally poisonous.

Walton said the discovery poses some interesting evolutionary questions. For example, why do only some mushrooms produce this toxin" And how did a handful of other, unrelated mushrooms evolve the same trait" Finding the genes points to how the trait could appear in one mushroom, but not how it evolved in mushrooms that aren’t related to Amanita.

Hallen and Walton also see the doors opening to a diagnostic test that could use DNA to determine if a mushroom is toxic or not. Identifying a mushroom by shape and color alone is often impossible if the mushroom has been cooked or partially digested, yet rapid and accurate identification in an emergency room situation is critical.

Jonathan Walton | EurekAlert!
Further information:
http://www.msu.edu

Further reports about: DNA Toxin mushroom poisonous sequence

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>