Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Identify Molecules with Interesting Anti-clotting Properties

Findings may point researchers to development of new drug therapies

Virginia Commonwealth University researchers have discovered a new mechanism to inhibit key enzymes that play a major role in clotting disorders, which could lead to novel therapies to treat clots in the lungs and those localized deep in the body in areas such as the legs.

Antithrombotic disorders occur when the effect of thrombin, a protein involved in coagulation, is inhibited, rendering blood unable to clot effectively. These disorders are considered common and can be fatal. Additionally, clotting disorders arise due to complications from other diseases like cancer. Although there are a number of anticoagulation drugs available -- heparins and warfarins -- some patients develop adverse reactions to the therapy and must be closely monitored.

In a study published in the Nov. 2 issue of the Journal of Biological Chemistry, Umesh R. Desai, Ph.D., a professor in the Department of Medicinal Chemistry at the VCU School of Pharmacy, lead investigator on the study, reported on the design of three highly complex molecules with unique anticoagulant properties that were prepared in the laboratory. According Desai, these molecules, known as sulfated DHPs, are completely different from anticoagulants used in the clinic today including heparins, coumarins and hirudins.

... more about:
»blood »clot »clotting

The team demonstrated that the molecules were able to inhibit the ability of critical enzymes involved with the cascade of events involved in blood clotting. Specifically, the molecules prevent the normal action of thrombin and factor Xa, which are the critical enzymes targeted by current anticoagulant therapy.

"We have identified a new mechanism that may prevent clotting. This approach may result in new drugs for the treatment of thrombotic disorders, including pulmonary embolism, deep vein thrombosis and more," said Desai.

"The molecules we have designed may possess several advantages compared to currently available anticoagulation drugs," he said.

"For example, new anti-clotting therapies may result in reduced hospital stays for patients, fewer side effects, and possibly an overall cost reduction in therapy because our molecules are likely to be synthesized in an inexpensive manner."

Desai and his team are now investigating which unit or units in the complex molecule are responsible for the anti-clotting activity.

This work was supported by grants from the National Institutes of Health and the American Heart Association National Center.

Desai collaborated with VCU researchers Brian L. Henry, Bernhard H. Monien; and Paul E. Bock, who is affiliated with Vanderbilt University.

Sathya Achia-Abraham | EurekAlert!
Further information:

Further reports about: blood clot clotting

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>