Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Molecules with Interesting Anti-clotting Properties

12.11.2007
Findings may point researchers to development of new drug therapies

Virginia Commonwealth University researchers have discovered a new mechanism to inhibit key enzymes that play a major role in clotting disorders, which could lead to novel therapies to treat clots in the lungs and those localized deep in the body in areas such as the legs.

Antithrombotic disorders occur when the effect of thrombin, a protein involved in coagulation, is inhibited, rendering blood unable to clot effectively. These disorders are considered common and can be fatal. Additionally, clotting disorders arise due to complications from other diseases like cancer. Although there are a number of anticoagulation drugs available -- heparins and warfarins -- some patients develop adverse reactions to the therapy and must be closely monitored.

In a study published in the Nov. 2 issue of the Journal of Biological Chemistry, Umesh R. Desai, Ph.D., a professor in the Department of Medicinal Chemistry at the VCU School of Pharmacy, lead investigator on the study, reported on the design of three highly complex molecules with unique anticoagulant properties that were prepared in the laboratory. According Desai, these molecules, known as sulfated DHPs, are completely different from anticoagulants used in the clinic today including heparins, coumarins and hirudins.

... more about:
»blood »clot »clotting

The team demonstrated that the molecules were able to inhibit the ability of critical enzymes involved with the cascade of events involved in blood clotting. Specifically, the molecules prevent the normal action of thrombin and factor Xa, which are the critical enzymes targeted by current anticoagulant therapy.

"We have identified a new mechanism that may prevent clotting. This approach may result in new drugs for the treatment of thrombotic disorders, including pulmonary embolism, deep vein thrombosis and more," said Desai.

"The molecules we have designed may possess several advantages compared to currently available anticoagulation drugs," he said.

"For example, new anti-clotting therapies may result in reduced hospital stays for patients, fewer side effects, and possibly an overall cost reduction in therapy because our molecules are likely to be synthesized in an inexpensive manner."

Desai and his team are now investigating which unit or units in the complex molecule are responsible for the anti-clotting activity.

This work was supported by grants from the National Institutes of Health and the American Heart Association National Center.

Desai collaborated with VCU researchers Brian L. Henry, Bernhard H. Monien; and Paul E. Bock, who is affiliated with Vanderbilt University.

Sathya Achia-Abraham | EurekAlert!
Further information:
http://www.vcu.edu

Further reports about: blood clot clotting

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>