Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A molecular switch is linked to a common breast cancer

12.11.2007
Researchers have discovered that a molecular switch in the protein making machinery of cells is linked to one of the most common forms of lethal breast cancer worldwide. The discovery by researchers at NYU School of Medicine could lead to new therapies for the cancer, called locally advanced breast cancer (LABC).

Although precise data isn’t available, LABC may account for 50 percent or more of breast cancers among women in developing countries, and 30 percent of breast cancers among socially disadvantaged and minority women in the United States. This type of cancer is defined by a large tumor that is about 2 inches or larger in diameter, about the size of a plum, when first diagnosed. The cancer may have spread into surrounding lymph nodes or other tissues. However, it hasn’t yet spread to more distant areas in the body.

Without treatment, fewer than 20 percent of patients with LABC are living five years after their diagnosis. Unfortunately, even with appropriate treatments, this cancer is deadlier than other types of breast cancer that are detected earlier.

With funding from the Breast Cancer Research Foundation and the Department of Defense, Robert J. Schneider, Ph.D., the Albert B. Sabin Professor of Molecular Pathogenesis, and Silvia C. Formenti, M.D., the Sandra and Edward H. Meyer Professor of Radiation Oncology and Chairwoman of Radiation Oncology, and their colleagues at NYU School of Medicine have made LABC the focus of a coordinated effort to understand the disease.

... more about:
»Cancer »Formenti »LABC »Molecular »Switch »breast »breast cancer

“This disease has not been sufficiently studied, in part because of the social, psychological, economic, and cultural barriers that may stand in the way of obtaining care,” says Dr. Formenti.

“Our study shows that an unusual molecular switch occurs that is essential for the development of these large tumors. We think that this switch could be a target for new therapies,” says Dr. Schneider.

The new study is published in the November 9, 2007 issue of the journal Molecular Cell.

Drs. Schneider and Formenti led the new study which found that two molecules were unusually abundant or “overexpressed” specifically in locally advanced breast cancers. Further analysis in mice revealed that the molecules orchestrated a switch in the use of messenger RNA, a kind of ferry service that carries information for making proteins. This switch, the researchers found, occurs when tumors become starved for oxygen, a condition known as hypoxia. The switch permits the selective expression of proteins that are required for tumors to carry out angiogenesis, the process of developing a blood supply. It also enables tumors to grow to a large size and to progress.

“The identification of the molecular switch and its importance for development of locally advanced breast cancer reveals realistic targets for the development of new therapeutics to block tumor angiogenesis and progression in breast and possibly other cancers,” says Dr. Schneider.

The authors of this study are: Drs. Formenti and Schneider; Ksenia Karpisheva; Steve Braunstein; Carolina Pola; Judith Goldberg; Tsivia Hochman; Herman Yee; Joan Cangiarella; and Rezina Arju. All are affiliated with NYU School of Medicine.

Pamela McDonnell | EurekAlert!
Further information:
http://www.nyumc.org

Further reports about: Cancer Formenti LABC Molecular Switch breast breast cancer

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>