Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UVa Health System Team Uncovers Gene's Role in Type 1 Diabetes

09.11.2007
Researchers at the University of Virginia Health System have identified an enzyme thought to be an important instigator of the inner-body conflict that causes Type 1 diabetes.

A chronic condition that affects nearly three million American children and adults, Type 1 diabetes is more severe than Type 2. Type 1 diabetes, also called autoimmune diabetes, arises when the body's infection-fighting white blood cells start destroying the beta-cells that produce insulin in the pancreas.

To shed light on how this conflict begins, UVa researchers focused on a single gene, 12/15-lipoxygenase (12/15-LO). This gene leads to the production of the enzyme, which appears to have an important role in the activation of white blood cells in the pancreas.

Researchers developed non-obese diabetic female mice to serve as a model of Type 1 diabetes. After turning off the 12/15-LO gene in study mice, they discovered that these mice without the enzyme were 97 percent less likely to develop diabetes than mice that had normal levels of it, according to the study, published online in the journal Diabetes (to be published in print in February 2008).

... more about:
»Diabetes »UVA »blood cell »islet »type

"This research is exciting because it advances our knowledge of a new gene that is involved in causing Type 1 diabetes and could pave the way for new treatments to prevent or reverse this increasingly prevalent disease," said Dr. Jerry L. Nadler, who is chief of the UVa Division of Endocrinology and Metabolism.

UVa researchers also discovered that study mice that did not have the 12/15-LO gene and remained non-diabetic demonstrated better glucose tolerance than non-diabetic NOD mice that were matched for age. (Worse glucose tolerance is an indication of having a pre-diabetes condition). The same group of study mice also had improved beta cell mass and less severe insulitis than their non-diabetic NOD counterparts.

Insulitis is a change in the islet cells that includes a high-fluid volume and too many white blood cells. While white blood cells normally help to fight off infections, they can cause damage over time when they infiltrate the islet cells of the pancreas.

"Our findings have two practical implications," said co-author Marcia McDuffie, professor of Microbiology at UVa. "First, they help us to understand the complicated process that produces self-destructive white blood cells. This knowledge may be useful in predicting which children may be at risk for developing Type 1 diabetes before significant damage has occurred in the islets. Second, we may be able to design drugs targeting this enzyme that may help to prevent Type 1 diabetes in people at risk for the disease and also to prevent recurrence of disease in transplanted islets."

Type 1 diabetes requires insulin injections, because the body cannot produce insulin on its own.

Mary Jane Gore | EurekAlert!
Further information:
http://www.virginia.edu

Further reports about: Diabetes UVA blood cell islet type

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>