Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Comparative analyses of 12 fly genomes reveals new insights on genome evolution and regulation

Genome Research is publishing a number of papers related to comparative analyses of twelve Drosophila (fly) genomes. The twelve fly genome project is unique in that the analyses of closely related species has allowed for a more complete and correct annotation of functional genes and regulatory elements in Drosophila melanogaster, a major model organism in genetics. These papers will appear online on November 7, concurrent with the publication of two main papers on the comparative sequence analyses of twelve fly genomes in the journal Nature.

1. The expanding universe of microRNAs

MicroRNAs (miRNAs) are short RNA molecules encoded by plant and animal genomes that have garnered significant interest for their ability to regulate gene expression. A number of miRNAs have been discovered in recent years, however it is likely that many miRNAs have gone undetected. Two papers published in Genome Research utilize the twelve fly genomes to identify novel miRNAs, further refine the set of known miRNAs, and investigate the biology and origins of miRNA genes.

In a study led by Dr. David Bartel, a combination of computational methods and high-throughput sequencing techniques identified new miRNAs conserved across the Drosophila species. “The new fly genomes enabled us to predict new miRNAs, 20 of which we experimentally confirmed, and the genome alignments enabled us to more accurately predict the evolutionarily conserved targets of these and other miRNAs,” explains Bartel.

... more about:
»Evolution »Genom »Genome »Regulation »analyses »fly »miRNA

While computational methods are important for identifying novel miRNAs, large-scale sequencing of small RNAs indicates that many miRNAs continue to evade prediction. “Most of the 59 novel miRNAs that we found were not predicted by us or by others,” describes Bartel. “This illustrates the advantages of high-throughput sequencing of small RNAs, and the limitations of comparative sequence analysis for miRNA gene identification.”

In a related paper, a study led by Dr. Manolis Kellis utilized the twelve Drosophila genomes to computationally predict and experimentally validate novel miRNAs by defining the structural and evolutionary properties of known miRNAs. Classification of newly identified miRNAs has revealed greater diversity in the regulation gene expression by miRNAs, with increased potential for combinatorial regulation, and provided new insights on miRNA biogenesis and function. “We learned that both arms of a miRNA hairpin can produce functional miRNAs, which sometimes work cooperatively to target a common pathway,” explains Kellis.

The combination of comparative and experimental analyses by both groups also provided novel evidence for emergent gene function, deriving from the portion of the miRNA hairpin previously believed to be discarded, and the strand of the DNA previously not thought to produce a miRNA.


David Bartel, Ph.D., Whitehead Institute/MIT/HHMI, Cambridge, MA, USA, +1-617-258-5287 or

Eric Lai, Ph.D., Sloan-Kettering Institute, New York, NY, USA, +1-212-639-5578 or

J. Graham Ruby, Whitehead Institute/MIT/HHMI, Cambridge, MA, USA, +1-617-324-1651

Ruby J.G. et al. 2007. Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res. doi:10.1101/gr.6597907.


Manolis Kellis, Ph.D., MIT/Broad Institute, Cambridge, MA, USA, +1-617-253-2419 or

Alexander Stark, Ph.D., MIT/Broad Institute, Cambridge, MA, USA, +1-617-253-6079

Stark A. et al. 2007. Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes. Genome Res. doi:10.1101/gr.6593807.

2. Revisiting D. melanogaster

Drosophila melanogaster is one of the most intensely studied model organisms in biology. Numerous studies over the years have defined nearly 14,000 protein-coding genes by experimental and computational methods, however these methods are likely to have produced erroneous annotations or may be missing other annotations. In order to assess the D. melanogaster protein-coding gene catalog, a group of researchers led by Dr. Manolis Kellis identified evolutionarily signatures of protein-coding genes by comparative analysis of the twelve fly genomes. This strategy was then applied to evaluation of the current catalog and identification of genes that have escaped annotation.

The study led to the discovery of hundreds of new genes, refined existing genes, and concluded that greater than 10% of the protein-coding gene annotations requires refinement.

Additionally, the work revealed abundant unusual gene structures. “We have learned that many brain-expressed proteins may be undergoing post-transcriptional changes by stop-codon read-through,” explains Kellis. “We found 149 genes for which a conserved stop codon is followed by strong evidence of protein-coding selection for up to hundreds of amino acids, suggesting a new mechanism for post-transcriptional regulation in animal genomes.” The researchers also report additional widespread evidence suggesting several diverse mechanisms of post-transcriptional regulation for protein-coding genes.


Manolis Kellis, Ph.D., MIT/Broad Institute, Cambridge, MA, USA, +1-617-262-6121

Lin M.F. et al. 2007. Revisiting the protein-coding gene catalog of Drosophila melanogaster using twelve fly genomes. Genome Res. doi:10.1101/gr6679507

3. Keeping genes in order

In humans and other vertebrate genomes, long-range regulatory DNA sequences known as highly conserved noncoding elements (HCNEs) have been found to cluster around genes involved in developmental processes, forming genomic regulatory blocks (GRBs). The GRBs are conserved in vertebrates, maintaining the order, or microsynteny, of associated genes on the chromosome. In this study, researchers utilize mosquito genome sequences and sequences available from the twelve fly genome project to investigate the microsynteny underlying GRBs across a wider range of evolution than previously possible.

“By using insect (Drosophila and mosquito) genome comparisons, we show that long-range regulation of developmental genes by arrays of highly conserved regulatory elements is an ancient feature that has shaped the evolution of metazoan genomes,” says Dr. Boris Lenhard, senior investigator of the study.

“Additionally, we present genome-wide evidence that the responsiveness of genes to long-range regulation is partially determined by the type of their core promoter,” explains Lenhard, addressing the issue of how some genes that are conserved in GRBs are not regulated by HCNEs.


Boris Lenhard, Ph.D., University of Bergen, Bergen, Norway, +47-555-84362

Engström P.G. et al. 2007. Genomic regulatory blocks underlie extensive microsynteny conservation in insects. Genome Res. doi:10.1101/gr.6669607.

4. Tracing the origins of relocated genes

Investigations into the evolution of genomes have revealed significant upheaval in genome organization: insertions, deletions, rearrangement or duplication of large regions, and even duplication of entire genomes. In addition, individual genes have undergone genomic relocation. Sequencing of the twelve Drosophila genomes now allows deeper investigations into single gene relocation and its origins.

“The availability of twelve fly genomes provides a unique opportunity to investigate fine-scale events, such as relocation of individual genes, using whole genome comparative analysis across various levels of evolutionary divergence,” explains primary author Arjun Bhutkar. Bhutkar and colleagues identify and characterize positionally relocated genes (PRGs) in the Drosophila genus, and provide evidence for two distinct origins of PRGs: transposition of genes at the level of DNA, and retrotransposition of RNAs into the genome.

The researchers extended their study to comparisons of Drosophila and other insect genomes. “Such analyses demonstrate the role of PRGs in evolutionary chromosomal organization,” says Bhutkar, as this study highlights the role of PRGs in creation of genomic diversity.


Arjun Bhutkar, Harvard University, Cambridge, MA, USA/Boston University, Boston, MA, USA, +1-617- 495-2906 or

William M. Gelbart, Ph.D., Harvard University, Cambridge, MA, USA, +1-617-495-2906

Bhutkar A. et al. 2007 Genome-scale analysis of positionally relocated genes. Genome Res. doi:10.1101/gr.7062307

Please direct requests for pre-print copies of the manuscripts to Peggy Calicchia, the Editorial Secretary for Genome Research (; +1-516-422-4012). In addition to the five articles highlighted above, the following will also appear in the issue:

5. Heger, A. and Ponting, C. 2007. Evolutionary rate analyses of orthologues and paralogues from twelve Drosophila Genomes. Genome Res. doi:10.1101/gr.6249707

6. Villasante, A. et al. 2007. Drosophila telomeric retrotransposons derived from an ancestral element that was recruited to replace telomerase. Genome Res. doi:10.1101/gr.6365107

7. Stage, D.E. and Eickbush, T.H. 2007. Sequence variation within the rRNA gene loci of twelve Drosophila species. Genome Res. doi:10.1101/gr.6376807

8. Stark, A. et al. 2007. Reliable prediction of regulator targets using 12 Drosophila genomes. Genome Res. doi:10.1101/gr.7090407

9. Rasmussen, M.D. and Kellis, M. 2007. Accurate gene-tree reconstruction by learning gene- and species-specific substitution rates across multiple complete genomes. Genome Res. doi:10.1101/gr.7105007

Robert Majovski | EurekAlert!
Further information:

Further reports about: Evolution Genom Genome Regulation analyses fly miRNA

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>