Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opium and marijuana research go underground

02.11.2007
High-security Canadian mine used for biochemical research into opium poppy and cannabis

The world’s leading expert on the opium poppy has joined forces with researchers working on another infamous drug-producing plant – cannabis – in hopes of finding new uses for the much-maligned sources of heroin and marijuana.

Peter Facchini, professor of Biological Sciences and Canada Research Chair in Plant Biotechnology, has received a $650,000 NSERC Strategic Project Grant to create new varieties of opium poppy and cannabis that can be used for medicinal and industrial purposes, but will have no value as illicit drugs. And his work is taking him where few Canadians have gone before: Deep underground into the country’s ultra high-security medicinal marijuana growth facility.

“It’s certainly unusual for a plant biochemist to work in a copper mine hundreds of metres underground,” Facchini said. “This is a really great project that involves two of the world’s most important medicinal plants and is clearly unique in the plant biology field.”

Facchini and a new team of U of C postdoctoral researchers have teamed up with Saskatoon-based Prairie Plant Systems Inc., the National Research Council – Plant Biotechnology Institute, the Alberta Research Council and the University of Saskatchewan to create and study mutant varieties of opium poppy and cannabis in an unused portion of a copper and zinc mine near Flin Flon, Manitoba. Prairie Plant Systems produces medicinal marijuana under contract with Health Canada in this state-of-the-art facility.

Despite awareness of the importance of crop diversification for the long-term success of agriculture in Canada, few plants are cultivated for the production of high-value bioproducts. Opium poppy accumulates the alkaloids morphine, codeine and thebaine, and cannabis produces psychoactive cannabinoids and is used as a source of high-quality fiber and oil. The domestic market for codeine, morphine and oxycodone, which is derived from thebaine, is in excess of $1.6 billion annually, all of which is currently imported. “Canada is well-positioned to support the development of new crops cultivated for the production of valuable bioproducts, such as pharmaceuticals and fibers,” says Facchini. The research will identify novel genes for use in the metabolic engineering of opium poppy to accumulate high-value pharmaceutical alkaloids and to block cannabinoid production in cannabis. The latter will allow for a safe, legal, made-in-Canada cannabis crop that will have virtually none of the mind-altering chemical of marijuana but can be grown for hemp fibre, oil and food.

“The overall theme of this work is to modify plants to make them more useful as crops and chemical factories,” Facchini said. “Alberta is quickly becoming a leader in this area, especially in the area of biofuels. The immense potential of plants as sources of high-value bioproducts for the agricultural and pharmaceutical sectors also needs attention.”

The Biosecure Underground Growth Chamber is in a mine owned by Hudson Bay Smelting & Mining Co. Ltd. Facchini says it is a superb venue for his research. “It’s not what you would picture an old mine shaft to be. It’s clean and well-lit, it’s kept at a constant temperature and it’s one of the most secure places in the country,” he says. “It gives a whole new meaning to ‘mining our data.’”

Grady Semmens | EurekAlert!
Further information:
http://www.ucalgary.ca

Further reports about: Cannabis Facchini Source crop marijuana medicinal opium underground

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>