Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opium and marijuana research go underground

02.11.2007
High-security Canadian mine used for biochemical research into opium poppy and cannabis

The world’s leading expert on the opium poppy has joined forces with researchers working on another infamous drug-producing plant – cannabis – in hopes of finding new uses for the much-maligned sources of heroin and marijuana.

Peter Facchini, professor of Biological Sciences and Canada Research Chair in Plant Biotechnology, has received a $650,000 NSERC Strategic Project Grant to create new varieties of opium poppy and cannabis that can be used for medicinal and industrial purposes, but will have no value as illicit drugs. And his work is taking him where few Canadians have gone before: Deep underground into the country’s ultra high-security medicinal marijuana growth facility.

“It’s certainly unusual for a plant biochemist to work in a copper mine hundreds of metres underground,” Facchini said. “This is a really great project that involves two of the world’s most important medicinal plants and is clearly unique in the plant biology field.”

Facchini and a new team of U of C postdoctoral researchers have teamed up with Saskatoon-based Prairie Plant Systems Inc., the National Research Council – Plant Biotechnology Institute, the Alberta Research Council and the University of Saskatchewan to create and study mutant varieties of opium poppy and cannabis in an unused portion of a copper and zinc mine near Flin Flon, Manitoba. Prairie Plant Systems produces medicinal marijuana under contract with Health Canada in this state-of-the-art facility.

Despite awareness of the importance of crop diversification for the long-term success of agriculture in Canada, few plants are cultivated for the production of high-value bioproducts. Opium poppy accumulates the alkaloids morphine, codeine and thebaine, and cannabis produces psychoactive cannabinoids and is used as a source of high-quality fiber and oil. The domestic market for codeine, morphine and oxycodone, which is derived from thebaine, is in excess of $1.6 billion annually, all of which is currently imported. “Canada is well-positioned to support the development of new crops cultivated for the production of valuable bioproducts, such as pharmaceuticals and fibers,” says Facchini. The research will identify novel genes for use in the metabolic engineering of opium poppy to accumulate high-value pharmaceutical alkaloids and to block cannabinoid production in cannabis. The latter will allow for a safe, legal, made-in-Canada cannabis crop that will have virtually none of the mind-altering chemical of marijuana but can be grown for hemp fibre, oil and food.

“The overall theme of this work is to modify plants to make them more useful as crops and chemical factories,” Facchini said. “Alberta is quickly becoming a leader in this area, especially in the area of biofuels. The immense potential of plants as sources of high-value bioproducts for the agricultural and pharmaceutical sectors also needs attention.”

The Biosecure Underground Growth Chamber is in a mine owned by Hudson Bay Smelting & Mining Co. Ltd. Facchini says it is a superb venue for his research. “It’s not what you would picture an old mine shaft to be. It’s clean and well-lit, it’s kept at a constant temperature and it’s one of the most secure places in the country,” he says. “It gives a whole new meaning to ‘mining our data.’”

Grady Semmens | EurekAlert!
Further information:
http://www.ucalgary.ca

Further reports about: Cannabis Facchini Source crop marijuana medicinal opium underground

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>