Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How a stressful life can contribute to the development of Alzheimer’s disease

01.11.2007
Research about to published in the journal Molecular Psychiatry, resulting from a collaboration between scientists in Germany, Portugal and the UK, suggests that stress contribute directly to the development of Alzheimer’s disease (AD).

According to the results now published, stress induces the production of amyloid beta (Aâ) peptide – the molecule associated with the neural plaques characteristic of the disease – and also makes neurons more vulnerable to Aâ toxicity. Administration of glucocorticoids (GC) - the production of which is the first physiological response to stress – was shown to have the same effect, confirming the role of stress in AD. This last result is particularly important as GC are used to treat Alzheimer’s patients and according to this research instead of helping they might be, instead, contributing to the disease.

Alzheimer’s disease is part of a group of illnesses called amyloidoses, which result from protein failure to fold and work properly (proteins’ shape is directly related to their functionality) leading, instead, to their accumulation as toxic insoluble plaques (or amyloids). In Alzheimer’s the misfolded protein is called Aâ and is found as insoluble plaques in the diseased neurons of patients.

It is known that AD patients can have higher anxiety and GC levels than those found on normal individuals and, in rodent models of AD, it has been found that stress can exacerbate the disease. Furthermore, high stressful conditions leads to cognitive impairments very similar to those found in AD patients. These observations have led researchers C Catania, N Sousa, OFX Almeida and colleagues in Germany, Portugal and the UK to wonder if there could be a causal relationship between stress and AD.

In order to investigate this possible link the researchers tested middle-aged rats in different stressful situations looking into Aâ peptide (and also another molecule called C99) levels in the hippocampus and the prefrontal cortex areas of the rats’ brain.

In fact, the first signs of AD do not correlate with the insoluble plaques of Aâ protein found in the diseased brain, but instead, with the levels of soluble Aâ peptide, while the hippocampus and the prefrontal cortex are the first brain areas affected in AD. Furthermore the Aâ peptide is formed from the breakdown of the amyloid precursor protein APP in a series of consecutive steps that originate a molecule called C99, which, when further degraded/cleaved, creates the Aâ peptide (APP –… – C99 – Aâ). And while Aâ peptide is well known to be neurotoxic, recent reports have indicated that C99 – besides being the precursor of Aâ - has a similar toxicity with both molecules affecting neural function and also cognitive behaviour. This has led Catania, Sousa, Almeida and colleagues to use the brain levels of both Aâ and C99 as a measure of potential neuro-damage and AD development in their experiments. Additionally, the researchers also looked into the consequences of glucocorticoids administration in order to confirm the specific effects of stress in AD, since GC secretion is the first physiological response to stress.

The team of researchers found that stressful situations or injections of GC (which mimic stress) led to an increase of both C99 and, eventually, of Aâ in both the hippocampus and the prefrontal cortex of the rats’ brain. Furthermore, rats with a history of stress were more susceptible to the effects of stress or GC administration, showing bigger increases in C99 levels. It was also observed that administration of soluble Aâ led to a similar increase in C99 in the rats’ brain, supporting results by others that have shown that Aâ can induce its own production, but also suggesting that Aâ, stress and GC induced the same biochemical responses.

Next, Catania and colleagues looked at the animals’ behaviour - as behavioural changes are the hallmark of AD - more specifically, at their learning and memory abilities, as these are the two first cognitive functions affected in the disease. They also looked into the rats’ anxiety levels since AD patients are known to be abnormally anxious.

For the analysis of spatial memory abilities, stressed and non-stressed rats were tested in a maze over 4 days while their emotional state was accessed by looking into anxiety levels, locomotion patterns and exploratory behaviour.

Characters

Their first conclusion was that, like AD patients, rats put into stressful situations or receiving GC were much more anxious than controls. It was also shown that these rats showed had less exploratory interest than control animals. Spatial reference memory – which is involved in learning with repeated experiences, such as those experienced in the maze – was similarly impaired by stress or administration of GC or Aâ. This last result again supports the conclusion that the GC and Aâ act on DA through the same biochemical mechanism. When stress and GC were applied together, spatial reference memory impairment increased revealing a cumulative effect of the various factors.

In conclusion, Catania, Sousa, Almeida and colleagues show that stress can contribute to Alzheimer’s disease in two ways: by inducing the production of known neurotoxic molecules - C99 and Aâ that affect neural function and cognitive behaviour, but also – in the case of existing a previous history of stress – by making animals more susceptible to the C99-inducing effects of GC and Aâ.These results – if further confirmed – have important implications for the understanding of the mechanisms behind Alzheimer’s disease and its predisposing factors and, consequently, also for possible therapeutic approaches.

Catania, Sousa, Almeida and colleagues’ research elucidates the mechanism behind stress and GC direct effect on the brain, and can also be important to understand how stress-mediated diseases, such as depression, affect brain function. The research also alert to the need of investigating further the use of GC in AD therapy and calls for the importance of, when treating AD patients, access previous history of stress or GC therapy.

Piece researched and written by Catarina Amorim – Catarina.Amorim at linacre.ox.ac.uk

Catarina Amorim | alfa
Further information:
http://www.nature.com/mp/journal/vaop/ncurrent/full/4002101a.html

Further reports about: Almeida Amyloid C99 Catania Development Peptide Production Sousa cognitive rats’ stressful

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>