Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers develop new cements to heal spinal fractures

29.10.2007
New research could offer hope for victims of the most devastating spinal injuries - typically those caused in car crashes.

Biological cements to repair ‘burst fractures’ of the spine are being developed and tested in a major new collaborative project between Queen’s University Belfast and the University of Leeds. The team has been awarded just under £500,000 by the Engineering and Physical Sciences Research Council (EPSRC) to develop and examine the effects of novel cement materials for the treatment of burst fractures.

Bone cements, similar to those used in joint replacement surgery, are already being used to strengthen damaged vertebrae of patients with diseases such as osteoporosis, in a procedure known as vertebroplasty, but ‘burst fractures’ to the spine, injuries often sustained in major impact accidents and falls, are much more difficult to treat. They account for over 1,000 emergency NHS admissions each year and often require highly complex, invasive surgery and a long stay in hospital.

To be able to use bone cements for burst fractures would be a major leap forward. It would be simpler, quicker and much less invasive for the patient, reducing both recovery times and NHS costs.

... more about:
»Queen’s »develop »fracture »spinal »vertebra

The project team at Queen’s has expertise in developing and testing synthetic biomaterials for the repair of bone defects. Dr Fraser Buchanan of the School of Mechanical and Aeronautical Engineering said: “These materials can be delivered to the fracture site by injection and mimic the chemical composition of bone itself.”

Dr Ruth Wilcox of Leeds University Institute of Medical and Biological Engineering, said: “This type of fracture causes the vertebra to burst apart and in severe cases fragments of bone can be pushed into the spinal cord. Surgeons may be able to join bone fragments together and stabilize the spine with the use of metal screws and rods, but patients with these injuries are often in a really bad way, so the less invasive the treatment, the better.”

Dr Buchanan added: “Clearly we need to develop biomaterials that more closely match the properties of real bone and this project offers the perfect opportunity to use the range of complimentary skills of this grouping to predict the effects of newly developed cements and even incorporate biological agents to assist the body’s own healing process.”

“This study demonstrates the significant benefits of working in a multidisciplinary team within Queen’s. In this case between the School of Mechanical and Aerospace Engineering and the School of Medicine and Dentistry, to address issues relating to tissue repair and regeneration.”

Statistically, burst fractures are seen more in younger people, and not enough is currently known about the long term consequences of using existing cements for the treatment of this type of injury. There is evidence to show that some patients with osteoporosis, who tend to be older, can develop fractures in the vertebrae adjacent to those treated with vertebroplasty.

“We think this may be because current cements are stiffer than the bone itself causing an imbalance in the way the spine bears weight. This may increase loading on the neighbouring vertebrae, which can lead to further damage,” said Dr Wilcox.

At Leeds the team has expertise in computational modelling of the spine and will be able to provide Queen’s with data to assist in the development of novel biomaterials and to simulate how they will perform in patients.

Lisa Mitchell | alfa
Further information:
http://www.qub.ac.uk

Further reports about: Queen’s develop fracture spinal vertebra

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>