Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoballs deliver drugs

25.10.2007
Dutch researcher Cristianne Rijcken has developed a new type of biodegradable nanoparticle. The spherical structures can encapsulate various fat-soluble medicines, which makes it easier to target tumour tissue. These nanoballs are highly promising carriers for the controlled release of anticancer drugs. Rijcken recently gained her doctorate for this research from Utrecht University.

Anticancer drugs sometimes have very harmful side effects because they do not distinguish between tumours and healthy tissue. However by encapsulating these drugs in nanoparticles, they more frequently end up in the right tissue. Due to the biodegradable nature of the nanoparticles, the drug is only released once the particles break down. The breakdown period can be adjusted by using different components for the nanostructures.

Drug packages

The nanoparticles consist of polyethylene glycol (PEG) chains which are attached to recently developed components: lactic acid derivatives of polymethacrylamides. These new chains possess the unique combined property of biodegradability and heat sensitivity. By simply heating up an aqueous polymer solution, compact spherical nanoparticles smaller than 100 nanometres are spontaneously formed. The properties and life span of Rijcken's so-called ' stabilised micelles' can be completely controlled by changing the components.

Experiments have shown that various types of fat-soluble anticancer drugs could be enclosed in the core of these micelles. The enclosed substances were only released after the lactic acid groups in the polymer had been split off, causing the nanoparticles to fall apart. The stabilised nanoballs accumulated to a larger extent in the tumours of tumour-carrying mice than traditional micelles. The new nanostructures exhibited no side effects and are completely biodegradable, whereas the current products with anticancer drugs often also contain other toxic ingredients.

Further research

Further research is needed to determine the blood circulation and tumour accumulation of drug-containing micelles. Additionally, the development of new components as building blocks for the nanoparticles will allow an even more accurate regulation of the specificity and drug release.

This research was funded by Technology Foundation STW.

Sonja Knols | alfa
Further information:
http://www.nwo.nl

Further reports about: Components anticancer biodegradable micelles nanoparticle tumour

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>