Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoballs deliver drugs

25.10.2007
Dutch researcher Cristianne Rijcken has developed a new type of biodegradable nanoparticle. The spherical structures can encapsulate various fat-soluble medicines, which makes it easier to target tumour tissue. These nanoballs are highly promising carriers for the controlled release of anticancer drugs. Rijcken recently gained her doctorate for this research from Utrecht University.

Anticancer drugs sometimes have very harmful side effects because they do not distinguish between tumours and healthy tissue. However by encapsulating these drugs in nanoparticles, they more frequently end up in the right tissue. Due to the biodegradable nature of the nanoparticles, the drug is only released once the particles break down. The breakdown period can be adjusted by using different components for the nanostructures.

Drug packages

The nanoparticles consist of polyethylene glycol (PEG) chains which are attached to recently developed components: lactic acid derivatives of polymethacrylamides. These new chains possess the unique combined property of biodegradability and heat sensitivity. By simply heating up an aqueous polymer solution, compact spherical nanoparticles smaller than 100 nanometres are spontaneously formed. The properties and life span of Rijcken's so-called ' stabilised micelles' can be completely controlled by changing the components.

Experiments have shown that various types of fat-soluble anticancer drugs could be enclosed in the core of these micelles. The enclosed substances were only released after the lactic acid groups in the polymer had been split off, causing the nanoparticles to fall apart. The stabilised nanoballs accumulated to a larger extent in the tumours of tumour-carrying mice than traditional micelles. The new nanostructures exhibited no side effects and are completely biodegradable, whereas the current products with anticancer drugs often also contain other toxic ingredients.

Further research

Further research is needed to determine the blood circulation and tumour accumulation of drug-containing micelles. Additionally, the development of new components as building blocks for the nanoparticles will allow an even more accurate regulation of the specificity and drug release.

This research was funded by Technology Foundation STW.

Sonja Knols | alfa
Further information:
http://www.nwo.nl

Further reports about: Components anticancer biodegradable micelles nanoparticle tumour

More articles from Life Sciences:

nachricht Matchmaking with consequences
17.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Taking screening methods to the next level
17.10.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Taking screening methods to the next level

17.10.2017 | Life Sciences

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

‘Find the Lady’ in the quantum world

17.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>