Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cross-species transplant in rhesus macaques is step toward diabetes cure for humans

22.10.2007
With an eye on curing diabetes, scientists at Washington University School of Medicine in St. Louis have successfully transplanted embryonic pig pancreatic cells destined to produce insulin into diabetic macaque monkeys – all without the need for risky immune suppression drugs that prevent rejection.

The transplanted cells, known as primordia, are in the earliest stages of developing into pancreatic tissues. Within several weeks of the transplants, the cells became engrafted, or established, within the three rhesus macaque monkeys that received them. The cells also released pig insulin in response to rising blood glucose levels, as would be expected in healthy animals and humans.

"The approach reduced the animals' need for insulin injections and has promise for curing diabetes in humans," says senior investigator Marc Hammerman, M.D., the Chromalloy Professor of Renal Diseases in Medicine. "The transplants worked without a need for immune suppression and that is a major obstacle we have overcome."

The researchers' results appear online and will be published in the journal Xenotransplantation in November.

Although the transplants fell short of producing sufficient insulin to cure the macaques' diabetes, Hammerman predicts that with additional research, including the transplantation of additional embryonic pig cells into the animals, he will be able to reduce their need for insulin injections entirely.

The new research follows on the heels of reports by Hammerman and his colleagues demonstrating that transplanted pig pancreatic primordia can cure both type 1 and type 2 diabetes in rats, without using immune suppression drugs. Other scientists have tried different types of pancreatic cell transplants – in animals and humans – as a stepping stone to curing diabetes, but they all require anti-rejection drugs. These drugs must be taken daily to stave off rejection and have adverse effects of their own that limit the success of the transplants.

As a treatment for diabetes in people, pig insulin typically works as well as the human form. Before recombinant DNA technology enabled pharmaceutical companies to manufacture human insulin in the 1980s, pig and cow insulin were routinely given to diabetic patients.

The primates in the current study had type 1 diabetes, the form that occurs when islet cells in the pancreas stop producing insulin all together. The Washington University researchers transplanted 19 embryonic pig pancreatic primordia into each diabetic monkey. Each primordium is smaller than the diameter of a period that ends a sentence and is transplanted into a membrane that envelops the intestines and other digestive organs.

The transplanted cells were retrieved from the pig embryos early in their development, which is believed to render them "invisible" to the primates' immune system or induce a state of tolerance, either of which eliminates the need for immune suppression.

The researchers determined by multiple methods that the transplanted cells became established within the primates. And as the cells matured, they began to release pig insulin. "We found using every method that the cells engraft long-term and, thus, are not rejected by the animals' immune systems," Hammerman says. "It's been more than two years since our first transplant was carried out. That particular primate doesn't produce any primate insulin, but has pig insulin circulating in its bloodstream that has reduced by more than 50 percent the amount of injected insulin the animal needs, compared to levels before the transplant. The animals have never received immune suppression drugs."

Two of the macaques remain healthy. One, however, became anemic about six weeks post-transplant and was euthanized a month later after developing acute respiratory distress. The researchers could not find a link between this animal's illness and the pancreatic cell transplants.

The two remaining macaques have each received two transplants of embryonic pancreatic cells. One of the animals has been followed for 23 months after his first transplant, and the amount of insulin he needs to have injected has declined by some 55 percent over baseline levels. The other macaque has been followed for 10 months after his initial transplant, and his need for injected insulin continues to decline over time.

Hammerman and his colleague Sharon Rogers, research instructor in medicine, are leaders in the emerging field of organogenesis, which focuses on growing organs from transplanted embryonic organ precursors known as primordia. Unlike embryonic stem cells, which can become virtually any cell type, primordia are locked into becoming cells of a particular organ.

"We are encouraged by these results," Rogers says. "The absence of a need for immune suppression in diabetic rats gave us hope that we were on the right track. But many findings in rats do not hold true for species that are more closely related to humans, such as non-human primates. This one did."

The team will now determine how best to eliminate the need for injected insulin in the diabetic macaques that receive transplants, thus demonstrating long-term effectiveness of the technique, and establish the absolute safety of pancreatic primordia transplants. If these experiments succeed, the researchers plan to conduct clinical trials in humans with diabetes.

"We hope to find out how to apply our findings to human type 1 and type 2 diabetics because the embryonic pig primordia would represent an unlimited source of tissue for transplantation," Hammerman says.

Caroline Arbanas | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: Diabetes Embryonic Hammerman Insulin cure macaque month pancreatic primate primordia suppression

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>