Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossilized cashew nuts reveal Europe was important route between Africa and South America

19.10.2007
Cashew nut fossils have been identified in 47-million year old lake sediment in Germany, revealing that the cashew genus Anacardium was once distributed in Europe, remote from its modern “native” distribution in Central and South America.

It was previously proposed that Anacardium and its African sister genus, Fegimanra, diverged from their common ancestor when the landmasses of Africa and South America separated. However, groundbreaking new data in the October issue of the International Journal of Plant Sciences indicate that Europe may be an important biogeographic link between Africa and the New World.

“The occurrence of cashews in both Europe and tropical America suggests that they were distributed in both North America and Europe during the Tertiary and spread across the North Atlantic landbridge that linked North America and Europe by way of Greenland before the rifting and divergence of these landmasses,” explain Steven R. Manchester (University of Florida), Volker Wilde (Forschungsinstitut Senckenberg, Sektion Palaeobotanik, Frankfurt am Main, Germany), and Margaret E. Collinson (Royal Holloway University of London, UK). “They apparently became extinct in northern latitudes with climatic cooling near the end of the Tertiary and Quaternary but were able to survive at more southerly latitudes.”

The cashew family (Anacardiaceae) includes trees, shrubs, and climbers prominent in tropical, subtropical, and warm temperate climates around the world. A key feature is an enlarged hypocarp, or fleshy enlargement of the fruit stalk, which is a specialized structure known only in the cashew family.

... more about:
»Anacardium »cashew »genus »nut

The researchers examined possible fossil remains found in the Messel oil shales, near Darmstadt, Germany, which are dated to about 47 million years before the present and reveal the presence of a “conspicuously thickened” stalk. In four out of five specimens, this hypocarp was still firmly attached to the nut, indicating that the two were dispersed as a unit. According to the researchers, the size and shape of the hypocarp – like a teardrop and two or three times longer than it is wide – support its assignation to the Anacardium genus, common to South America, rather than the African Fegimanra genus, though the fossils have features common to both.

“The occurrence of Anacardium in the early Middle Eocene of Germany suggests . . . that the two genera [Anacardium and Fegimanra] diverged after dispersal between Europe and Africa,” the researchers write. “Presumably, Anacardium traversed the North American landbridge during the Early or Middle Eocene, at a time of maximal climatic warmth, when higher latitudes were habitable by frost-sensitive plants.”

The astoundingly close similarity between the fossil and modern day Anacardium also indicates little evolutionary change to the cashew since the mid-Eocene period: “Although cashews have been cultivated for human consumption for centuries, it is clear that they were in existence millions of years before humans. The cashew had already evolved more than 45 million years ago, apparently in association with biotic dispersers,” they write.

Suzanne Wu | EurekAlert!
Further information:
http://www.uchicago.edu

Further reports about: Anacardium cashew genus nut

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>