Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossilized cashew nuts reveal Europe was important route between Africa and South America

19.10.2007
Cashew nut fossils have been identified in 47-million year old lake sediment in Germany, revealing that the cashew genus Anacardium was once distributed in Europe, remote from its modern “native” distribution in Central and South America.

It was previously proposed that Anacardium and its African sister genus, Fegimanra, diverged from their common ancestor when the landmasses of Africa and South America separated. However, groundbreaking new data in the October issue of the International Journal of Plant Sciences indicate that Europe may be an important biogeographic link between Africa and the New World.

“The occurrence of cashews in both Europe and tropical America suggests that they were distributed in both North America and Europe during the Tertiary and spread across the North Atlantic landbridge that linked North America and Europe by way of Greenland before the rifting and divergence of these landmasses,” explain Steven R. Manchester (University of Florida), Volker Wilde (Forschungsinstitut Senckenberg, Sektion Palaeobotanik, Frankfurt am Main, Germany), and Margaret E. Collinson (Royal Holloway University of London, UK). “They apparently became extinct in northern latitudes with climatic cooling near the end of the Tertiary and Quaternary but were able to survive at more southerly latitudes.”

The cashew family (Anacardiaceae) includes trees, shrubs, and climbers prominent in tropical, subtropical, and warm temperate climates around the world. A key feature is an enlarged hypocarp, or fleshy enlargement of the fruit stalk, which is a specialized structure known only in the cashew family.

... more about:
»Anacardium »cashew »genus »nut

The researchers examined possible fossil remains found in the Messel oil shales, near Darmstadt, Germany, which are dated to about 47 million years before the present and reveal the presence of a “conspicuously thickened” stalk. In four out of five specimens, this hypocarp was still firmly attached to the nut, indicating that the two were dispersed as a unit. According to the researchers, the size and shape of the hypocarp – like a teardrop and two or three times longer than it is wide – support its assignation to the Anacardium genus, common to South America, rather than the African Fegimanra genus, though the fossils have features common to both.

“The occurrence of Anacardium in the early Middle Eocene of Germany suggests . . . that the two genera [Anacardium and Fegimanra] diverged after dispersal between Europe and Africa,” the researchers write. “Presumably, Anacardium traversed the North American landbridge during the Early or Middle Eocene, at a time of maximal climatic warmth, when higher latitudes were habitable by frost-sensitive plants.”

The astoundingly close similarity between the fossil and modern day Anacardium also indicates little evolutionary change to the cashew since the mid-Eocene period: “Although cashews have been cultivated for human consumption for centuries, it is clear that they were in existence millions of years before humans. The cashew had already evolved more than 45 million years ago, apparently in association with biotic dispersers,” they write.

Suzanne Wu | EurekAlert!
Further information:
http://www.uchicago.edu

Further reports about: Anacardium cashew genus nut

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>