Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glue inside the cell: Ubiquitin builds up an immune response

19.10.2007
Ubiquitin is a small protein, which can be attached to other cellular proteins, a process known as ubiquitination. Discoveries in the 1980 th on a key function of ubiquitination in the regulation of protein degradation where awarded with the Nobel Prize for chemistry in 2004.

A study headed by the Junior Group of Dr. Daniel Krappmann (GSF - National Research Center for Environment and Health, Institute of Toxicology) in collaboration with Dr. Jürgen Ruland (TU Munich) and Dr. Claus Scheidereit ( Max-Delbrück-Center , Berlin ) now reports a novel finding about ubiquitination as a key event for the activation of an immune response. (EMBO J. AOP, 18.10.2007).

The acquired immune response is triggered after specific engagement of foreign peptides (antigens) by receptor molecules on white blood cell (lymphocytes). Cellular signaling pathways are responsible for the activation of lymphocytes. Krappmann and co-workers present evidence, that in T cells, which constitute a subgroup of lymphocytes, ubiquitin is attached to the Malt1 protein in response to antigen stimulation. Malt1 is part of the CBM (Carma1-Bcl10-Malt1) complex that constitutes a crucial switch for the activation of the immune defense. Using biochemical, molecular and genetic techniques the scientists could prove that this novel Malt1 ubiquitination is an essential step in the regulation of T cell activation.

‘Mechanistically, ubiquitin is virtually acting as all-purpose glue that links different protein components inside the cell’, Krappmann explains. ’However, ubiquitination provides an important advantage compared to conventional adhesives: It is reversible, meaning that the associations can be resolved’.

... more about:
»Malt1 »Ubiquitin »immune »lymphocyte »ubiquitination

This process of de-ubiquitination is constantly happening in cells and it could contribute to prevent an over-shooting activation of T cells. Unopposed lymphocyte activity is responsible for many chronic diseases, autoimmunity or even lymphoma development. Future work must address the status of Malt1 ubiquitination under pathological conditions, for instance in Malt1 dependent lymphomas. By this the scientists hope to demonstrate the potential of targeting the ubiquitin system for the development of novel therapeutic approaches.

Michael van den Heuvel | alfa
Further information:
http://www.gsf.de

Further reports about: Malt1 Ubiquitin immune lymphocyte ubiquitination

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>