Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feeling sleepy is all in your genes

18.10.2007
Genes responsible for our 24 hour body clock influence not only the timing of sleep, but also appear to be central to the actual restorative process of sleep, according to research published in the online open access journal BMC Neuroscience. The study identified changes in the brain that lead to the increased desire and need for sleep during time spent awake.

"We still do not know why we benefit from sleep, or why we feel tired when we are 'lacking' sleep, but it seems likely that sleep serves some basic biological function for the brain such as energy restoration for brain cells or memory consolidation." Explains Dr Bruce O'Hara of the University of Kentucky, one of the neuroscientists who conducted the research.

"We have found that clock gene expression in the brain is highly correlated to the build-up of sleep debt, while previous findings have linked these genes to energy metabolism. Together, this supports the idea that one function of sleep is related to energy metabolism."

To explore the connection between the expression of clock genes and sleep, three inbred strains of mice with different genetic make-ups were utilized, and which had previously been shown to differ in their response to sleep deprivation by lead author, Dr. Paul Franken of Stanford University and Lausanne University. In this study, mice were first sleep deprived during the daytime period when mice normally sleep then allowed recovery sleep. Changes in gene expression for three clock genes were examined throughout the brain during both phases. Clock gene expression generally increased the more the mice were kept awake and decreased when sleep was allowed, supporting that these genes play a role in the regulation of the need for sleep. Generally, the expression of the clock-genes Period-1 and Period-2, increased at a faster rate in mouse strains with the poorest quality of recovery sleep suggesting that the detailed dynamic changes in expression may underlie individual differences in sleep length and sleep quality. The changes in gene expression were also shown to occur in many different brain regions supporting the idea that sleep is a global brain function.

... more about:
»Brain »Expression »changes »clock

A handful of genes such as Period-1 and Period-2 have been shown previously to underlie our circadian rhythms (behavior and physiology that follow a 24 hour cycle). The major advantage of circadian rhythms is that they allow animals and plants to predict and prepare for periodic changes in the environment. The anticipatory increase in clock-gene expression may be, on a molecular level, an animal's preparation for activity. Variations in clock genes may underlie rhythmic traits influencing our preferred wake-up time, but the clock genes' role in direct sleep regulation, as shown in this study, may also influence sleep duration and human performance with differing amounts of sleep. The research could also help shed light on the biology of mood disorders, such as Seasonal Affective Disorder (SAD) or bipolar disorder, that appear linked to both sleep and circadian rhythms.

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com/bmcneurosci/

Further reports about: Brain Expression changes clock

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>