Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sex hormone signature indicates gender rather than just chromosomes

18.10.2007
Help with assigning gender could one day be at hand for intersex individuals whose genital phenotypes and sex chromosomes don't match, thanks to the discovery of a stable sex hormone signature in our cells.

In an article published today in the online open access journal BMC Genomics, researchers have shown for the first time that testosterone leaves an irreversible molecular signature in cells that may provide a far more sophisticated way to look at sex than just ascertaining the presence of the Y chromosome. A team of researchers from the US and Germany were able to pinpoint the role of testosterone by comparing individuals with complete androgen insensitivity syndrome (CAIS) to people without CAIS. The findings provide a platform for future work that may lead to improved counselling for those whose gender is ambiguous.

Lead researcher, Professor Paul-Martin Holterhus, of University-Hospital Schleswig-Holstein, Kiel, Germany, said: "Androgens have long lasting effects during certain sensitive stages of our genital development and this is probably true for other organs". He adds "It is currently increasingly accepted that the brain shows sex-specific development in response to presence or absence of testosterone. This affects sex specific behaviour and probably modulates gender identity."

The role of androgens - especially the male-defining hormone testosterone - in sexual development has long been known. Gender programming begins in the embryo and is thought to continue throughout life, particularly during puberty. However, what's not currently known is the different roles of sex chromosome genes versus the long-term programming effects of sex hormones, namely androgens.

Individuals with CAIS, which affects 1 in 20,000 people, look like normal females. But at a genetic level CAIS women have XY sex chromosomes rather than the usual XX. The condition is due to mutations in the gene coding for the androgen receptor, which means that androgen signalling doesn't work: it essentially knocks out the effect of testosterone. The researchers used skin biopsies of external genitalia to compare the gene expression of normal males and CAIS females. Analysis revealed that between males and females, 440 genes differed in their level of transcription. The activity levels of these genes form a 'signature' that they used to evaluate partial androgen insensitivity syndrome (AIS) samples and could be developed to help understand more about individual AIS cases.

"Since we compared XY females with the XY males, the difference can only be explained by differences in androgen action and not by differences in sex chromosomes," explains Professor Holterhus. "Another intriguing observation is that the one normal female (with a 46,XX genotype) in our study did not differ a lot with respect to the identified genes from the XY females. This is an important reassurance for XY females because it limits the role of the sex chromosomes in gender assignment."

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com/bmcgenomics/

Further reports about: Androgen CAIS Chromosome Gender Sex Signature effect hormone testosterone

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>