Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sea cucumbers fast track organ regrowth by healing their wounds

18.10.2007
Sea cucumbers are the champions of organ regrowth because they direct their wound healing abilities towards restoring their organs, according to research published in the online open access journal, BMC Developmental Biology.

The discovery that Holothuria glaberrima uses similar cellular mechanisms during wound healing and organ regeneration gives us the opportunity to discover how to repair our own wounds and, perhaps eventually, how to regenerate body parts.

The research was carried out by the investigators José San Miguel-Ruiz and José García-Arrarás, at the University of Puerto Rico. "Sea cucumbers should be viewed as the tissue regeneration equivalent of the squid for our knowledge of nerves and Drosophila for genes and the genome. They can help us learn to fix ourselves," commented Professor Garcia-Arraras.

"Many people, including scientists, regard sea cucumbers and other echinoderms like star fish and brittle stars as bizarre, exceptional outcasts because of their regenerative abilities. But we've shown that they use the same 'ordinary' mechanisms and processes to both regenerate and heal wounds."

... more about:
»Organ »Regeneration »healing »mechanism »repair »wound

All animals possess some kind of tissue repair mechanism. The sea cucumber, H. glaberrima, belongs to a group of marine animals that are well known for their ability to regenerate, along with the axolotl salamander, which is also famous for regrowing lost limbs. The scientists made observations over a four-week healing period and found that sea cucumbers healed up rapidly after receiving a 3 to 5 millimetre cut along the body wall.

The repair process involved special cells called morula cells moving to the injury site and full repair was achieved after just a couple of weeks. The cellular events observed during the healing of sea cucumber muscular, nervous and dermal tissues that correspond to those observed during intestinal regeneration include extracellular matrix remodeling and the dedifferentiation of muscle cells.

Although all animals have wound repair processes, not all regenerate injured or lost body parts. There must be some unusual properties of the healing processes found in animals capable of organ regeneration. So it remains to be seen at a molecular level what limits healing processes being used for regeneration by all animals in all tissue.

"Many of these regenerative mechanisms are the same as those being used by other animals to heal and repair - this includes us humans, "concluded Professor Garcia-Arraras. "Sea cucumbers will probably provide us with the key to deciphering how to regenerate our tissues, or at least find out what is needed to do this."

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com/bmcdevbiol/

Further reports about: Organ Regeneration healing mechanism repair wound

More articles from Life Sciences:

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>