Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sea cucumbers fast track organ regrowth by healing their wounds

18.10.2007
Sea cucumbers are the champions of organ regrowth because they direct their wound healing abilities towards restoring their organs, according to research published in the online open access journal, BMC Developmental Biology.

The discovery that Holothuria glaberrima uses similar cellular mechanisms during wound healing and organ regeneration gives us the opportunity to discover how to repair our own wounds and, perhaps eventually, how to regenerate body parts.

The research was carried out by the investigators José San Miguel-Ruiz and José García-Arrarás, at the University of Puerto Rico. "Sea cucumbers should be viewed as the tissue regeneration equivalent of the squid for our knowledge of nerves and Drosophila for genes and the genome. They can help us learn to fix ourselves," commented Professor Garcia-Arraras.

"Many people, including scientists, regard sea cucumbers and other echinoderms like star fish and brittle stars as bizarre, exceptional outcasts because of their regenerative abilities. But we've shown that they use the same 'ordinary' mechanisms and processes to both regenerate and heal wounds."

... more about:
»Organ »Regeneration »healing »mechanism »repair »wound

All animals possess some kind of tissue repair mechanism. The sea cucumber, H. glaberrima, belongs to a group of marine animals that are well known for their ability to regenerate, along with the axolotl salamander, which is also famous for regrowing lost limbs. The scientists made observations over a four-week healing period and found that sea cucumbers healed up rapidly after receiving a 3 to 5 millimetre cut along the body wall.

The repair process involved special cells called morula cells moving to the injury site and full repair was achieved after just a couple of weeks. The cellular events observed during the healing of sea cucumber muscular, nervous and dermal tissues that correspond to those observed during intestinal regeneration include extracellular matrix remodeling and the dedifferentiation of muscle cells.

Although all animals have wound repair processes, not all regenerate injured or lost body parts. There must be some unusual properties of the healing processes found in animals capable of organ regeneration. So it remains to be seen at a molecular level what limits healing processes being used for regeneration by all animals in all tissue.

"Many of these regenerative mechanisms are the same as those being used by other animals to heal and repair - this includes us humans, "concluded Professor Garcia-Arraras. "Sea cucumbers will probably provide us with the key to deciphering how to regenerate our tissues, or at least find out what is needed to do this."

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com/bmcdevbiol/

Further reports about: Organ Regeneration healing mechanism repair wound

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>