Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


An AIDS-related virus reveals more ways to cause cancer

Researchers at the University of Pennsylvania School of Medicine have shed new light on how Kaposi’s Sarcoma-associated Herpes Virus (KSHV) subverts normal cell machinery to cause cancer.

A KSHV protein called latency-associated nuclear antigen, LANA for short, helps the virus hide out from the immune system in infected cells. When LANA takes the place of other proteins that control cell growth, it can cause uncontrolled cell replication.

The findings appear in a recent issue of the Proceedings of the National Academy of Sciences.

“This is the first report of LANA interfering with the crucial cellular protein called intracellular Notch,” says lead author Erle Robertson, PhD, Professor of Microbiology and the Program Leader of Tumor Virology at Penn’s Abramson Cancer Center. Notch is a signaling molecule that triggers cell development and maintains the stability of cells in many organs, such as the brain, heart, blood, and muscle.

... more about:
»ICN »KSHV »LANA »Robertson »Sel10 »degradation

“Intracellular notch, or ICN, promotes cell growth and proliferation, therefore it must be regulated so that these processes do not lead to cancer,” says Robertson. “We found that regulation of ICN through binding to another protein called Sel10, a cell-cycle regulatory protein, is derailed. The large complex of ICN, Sel10, and other factors is marked for degradation by a process called ubiquitination,” says Robertson. In normal uninfected cells, the level of ICN, and thus cell growth and proliferation, is fine-tuned by regulating ICN degradation.

LANA interferes with the degradation of ICN because it competes with ICN for the same binding site on Sel10. If LANA sits on Sel10, ICN cannot be degraded and cell growth and proliferation are no longer controlled. Kaposi’s sarcoma and primary effusion lymphoma are two of the viral-associated cancers that are common in immune-compromised patients.

This is the second mechanism discovered by Robertson and his associates by which KSHV subverts control of normal cell growth. Robertson’s group previously found that LANA marks tumor suppressors, such as p53 and VHL, for degradation.

Other herpes viruses, such as the one that causes cold sores and Epstein-Barr virus, which causes mononucleosis, are able to hide out in cells as well. “Whether these latent herpes viruses use some of the same strategies that we have found for LANA in KSHV has not been determined,” says Robertson.

This new role for LANA was discovered using specific human cell lines. The next step is to test whether LANA works the same way in animals infected with KSHV. “We have completed some studies in mice that indicate that LANA can contribute to tumor development in an animal in ways similar to what we have observed in cell culture,” says Robertson. The animal models will be useful for testing new drug therapies that may inhibit the activity of LANA and eventually prevent the growth of viral-associated cancers.

This work was funded by the National Institutes of Health and the Leukemia and Lymphoma Society of America. Co-authors are Ke Lan of Penn and the Chinese Academy of Science, and S.C. Verma, M. Marakami, B. Bajaj and R. Kaul, all from Penn.

Karen Kreeger | EurekAlert!
Further information:

Further reports about: ICN KSHV LANA Robertson Sel10 degradation

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>