Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An AIDS-related virus reveals more ways to cause cancer

10.10.2007
Researchers at the University of Pennsylvania School of Medicine have shed new light on how Kaposi’s Sarcoma-associated Herpes Virus (KSHV) subverts normal cell machinery to cause cancer.

A KSHV protein called latency-associated nuclear antigen, LANA for short, helps the virus hide out from the immune system in infected cells. When LANA takes the place of other proteins that control cell growth, it can cause uncontrolled cell replication.

The findings appear in a recent issue of the Proceedings of the National Academy of Sciences.

“This is the first report of LANA interfering with the crucial cellular protein called intracellular Notch,” says lead author Erle Robertson, PhD, Professor of Microbiology and the Program Leader of Tumor Virology at Penn’s Abramson Cancer Center. Notch is a signaling molecule that triggers cell development and maintains the stability of cells in many organs, such as the brain, heart, blood, and muscle.

... more about:
»ICN »KSHV »LANA »Robertson »Sel10 »degradation

“Intracellular notch, or ICN, promotes cell growth and proliferation, therefore it must be regulated so that these processes do not lead to cancer,” says Robertson. “We found that regulation of ICN through binding to another protein called Sel10, a cell-cycle regulatory protein, is derailed. The large complex of ICN, Sel10, and other factors is marked for degradation by a process called ubiquitination,” says Robertson. In normal uninfected cells, the level of ICN, and thus cell growth and proliferation, is fine-tuned by regulating ICN degradation.

LANA interferes with the degradation of ICN because it competes with ICN for the same binding site on Sel10. If LANA sits on Sel10, ICN cannot be degraded and cell growth and proliferation are no longer controlled. Kaposi’s sarcoma and primary effusion lymphoma are two of the viral-associated cancers that are common in immune-compromised patients.

This is the second mechanism discovered by Robertson and his associates by which KSHV subverts control of normal cell growth. Robertson’s group previously found that LANA marks tumor suppressors, such as p53 and VHL, for degradation.

Other herpes viruses, such as the one that causes cold sores and Epstein-Barr virus, which causes mononucleosis, are able to hide out in cells as well. “Whether these latent herpes viruses use some of the same strategies that we have found for LANA in KSHV has not been determined,” says Robertson.

This new role for LANA was discovered using specific human cell lines. The next step is to test whether LANA works the same way in animals infected with KSHV. “We have completed some studies in mice that indicate that LANA can contribute to tumor development in an animal in ways similar to what we have observed in cell culture,” says Robertson. The animal models will be useful for testing new drug therapies that may inhibit the activity of LANA and eventually prevent the growth of viral-associated cancers.

This work was funded by the National Institutes of Health and the Leukemia and Lymphoma Society of America. Co-authors are Ke Lan of Penn and the Chinese Academy of Science, and S.C. Verma, M. Marakami, B. Bajaj and R. Kaul, all from Penn.

Karen Kreeger | EurekAlert!
Further information:
http://www.pennhealth.com/news

Further reports about: ICN KSHV LANA Robertson Sel10 degradation

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>