Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Agent that triggers immune response in plants is uncovered

08.10.2007
Although plants lack humans' T cells and other immune-function cells to signal and fight infection, scientists have known for more than 100 years that plants still somehow signal that they have been attacked in order to trigger a plantwide resistance.

Now, researchers at the Boyce Thompson Institute for Plant Research (BTI) on the Cornell campus have identified the elusive signal in the process: methyl salicylate, an aspirin-like compound that alerts a plant's immune system to shift into high gear.

This phenomenon is called systemic acquired resistance and is known to require movement of a signal from the site of infection to uninfected parts of the plant.

The findings are published in the Oct. 5 issue of Science.

"By finally identifying a signal that moves from an infection site to activate defenses throughout the plant, as well as the enzymes that regulate the level of this signal, we may be in a position to alter the signal in a way that enhances a plant's ability to defend itself," said BTI senior scientist Daniel F. Klessig, an adjunct professor in plant pathology at Cornell, who conducted the work with Sang-Wook Park and other BTI colleagues.

Their approach, using gene technology to enhance plant immunity, could have wide consequences, boosting crop production and reducing pesticide use.

Methyl salicylate is a modified form of salicylic acid (SA), which has been used for centuries to relieve fever, pain and inflammation, first through the use of willow bark and, since 1889, with aspirin, still the most widely used drug worldwide.

In the 1990s, Klessig's research group reported that SA and nitric oxide are two critical defense-signaling molecules in plants, as well as playing important roles in human health. Then, in 2003 and 2005, the group reported in the Proceedings of the National Academy of Sciences that an enzyme, salicylic acid-binding protein 2 (SABP2), is required for systemic acquired resistance and converts methyl salicylate (which is biologically inactive as it fails to induce immune responses) into SA, which is biologically active.

After plants are attacked by a pathogen, the researchers had previously found, they produce SA at the infection site to activate their defenses. Some of the SA is converted into methyl salicylate, which can be converted back into SA by SABP2.

Using plants in which SABP2 function was either normal, turned off or mutated in the infected leaves or the upper, uninfected leaves, Klessig's group showed that SABP2 must be active in the upper, uninfected leaves for systemic acquired resistance to develop properly. By contrast, SABP2 must be inactivated in the infected leaves by binding to SA.

"This inactivation allows methyl salicylate to build up," explained Klessig. "It then flows through the phloem (or food-conducting "tubes") to the uninfected tissue, where SABP2 converts it back into active SA, which can now turn on the plant's defenses."

Klessig said that it is unclear why plants send this hormone to uninfected tissue in an inactive form, which then must be activated by removal of the methyl group.

"This research also provides insight into how a hormone like SA can actively regulate its own structure -- and thereby determine its own activity -- by controlling the responsible enzyme," noted Park, the lead author of the paper.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

Further reports about: SABP2 immune methyl methyl salicylate resistance salicylate

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>