Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Agent that triggers immune response in plants is uncovered

Although plants lack humans' T cells and other immune-function cells to signal and fight infection, scientists have known for more than 100 years that plants still somehow signal that they have been attacked in order to trigger a plantwide resistance.

Now, researchers at the Boyce Thompson Institute for Plant Research (BTI) on the Cornell campus have identified the elusive signal in the process: methyl salicylate, an aspirin-like compound that alerts a plant's immune system to shift into high gear.

This phenomenon is called systemic acquired resistance and is known to require movement of a signal from the site of infection to uninfected parts of the plant.

The findings are published in the Oct. 5 issue of Science.

"By finally identifying a signal that moves from an infection site to activate defenses throughout the plant, as well as the enzymes that regulate the level of this signal, we may be in a position to alter the signal in a way that enhances a plant's ability to defend itself," said BTI senior scientist Daniel F. Klessig, an adjunct professor in plant pathology at Cornell, who conducted the work with Sang-Wook Park and other BTI colleagues.

Their approach, using gene technology to enhance plant immunity, could have wide consequences, boosting crop production and reducing pesticide use.

Methyl salicylate is a modified form of salicylic acid (SA), which has been used for centuries to relieve fever, pain and inflammation, first through the use of willow bark and, since 1889, with aspirin, still the most widely used drug worldwide.

In the 1990s, Klessig's research group reported that SA and nitric oxide are two critical defense-signaling molecules in plants, as well as playing important roles in human health. Then, in 2003 and 2005, the group reported in the Proceedings of the National Academy of Sciences that an enzyme, salicylic acid-binding protein 2 (SABP2), is required for systemic acquired resistance and converts methyl salicylate (which is biologically inactive as it fails to induce immune responses) into SA, which is biologically active.

After plants are attacked by a pathogen, the researchers had previously found, they produce SA at the infection site to activate their defenses. Some of the SA is converted into methyl salicylate, which can be converted back into SA by SABP2.

Using plants in which SABP2 function was either normal, turned off or mutated in the infected leaves or the upper, uninfected leaves, Klessig's group showed that SABP2 must be active in the upper, uninfected leaves for systemic acquired resistance to develop properly. By contrast, SABP2 must be inactivated in the infected leaves by binding to SA.

"This inactivation allows methyl salicylate to build up," explained Klessig. "It then flows through the phloem (or food-conducting "tubes") to the uninfected tissue, where SABP2 converts it back into active SA, which can now turn on the plant's defenses."

Klessig said that it is unclear why plants send this hormone to uninfected tissue in an inactive form, which then must be activated by removal of the methyl group.

"This research also provides insight into how a hormone like SA can actively regulate its own structure -- and thereby determine its own activity -- by controlling the responsible enzyme," noted Park, the lead author of the paper.

Blaine Friedlander | EurekAlert!
Further information:

Further reports about: SABP2 immune methyl methyl salicylate resistance salicylate

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>