Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Schizophrenia Candidate Genes Affect Even Healthy Individuals

28.09.2007
Do gene variants that convey risk for schizophrenia affect apparently healthy individuals? Although these genes are present in every human, individuals may have different versions of these genes, called alleles.

While many people who possess these “risk alleles” do not end up with schizophrenia, this does not mean they are unaffected by the presence of the risk allele. In the largest study of its kind to date, scheduled for publication in the October 1st issue of Biological Psychiatry, researchers sought to examine the impact of a few particular genes, known to be associated with a diagnosis of schizophrenia, on a healthy population.

Stefanis and colleagues recruited more than 2000 young men and measured dimensions of their cognitive abilities that tend to be impaired in individuals diagnosed with schizophrenia. The authors also measured schizotypal personality traits, which represent behaviors that are associated with schizophrenia, such as atypical behaviors and beliefs, suspiciousness or paranoia, and discomfort in social situations. They then genotyped these volunteers in relation to the four most prominent schizophrenia candidate genes: Neuregulin1 (NRG1), Dysbindin (DTNBP1), D-amino-acid oxidase activator (DAOA), and D-amino-acid oxidase (DAAO). According to Nicholas Stefanis, the lead author on the paper, their study showed “that apparently normal individuals who posses several risk alleles within these susceptibility schizophrenia genes, have indeed minute decrements in cognitive ability such as decreased attentional capacity and worse performance on memory tasks, and alterations in schizotypal beliefs and experiences.” In other words, they found that the healthy individuals who possessed the risk variants within the DNTBP1, NRG1, and DAAO genes exhibited small reductions in their cognitive performance and had atypical experiences that might be associated with schizophrenia.

John H. Krystal, M.D., Editor of Biological Psychiatry and affiliated with both Yale University School of Medicine and the VA Connecticut Healthcare System, notes: “The genetics of schizophrenia is turning out to be a complicated story involving many so-called “risk gene variants” that are actually commonly present in the general population, i.e., people who do not have schizophrenia and will never develop this disorder. It is striking that these genes all effect the glutamate system in the brain. Glutamate is the main excitatory chemical messenger used by the cerebral cortex. Thus, this paper highlights a role for glutamate in the development of schizophrenia-like symptoms, attention deficits, and memory problems. This genetic information adds to a growing body of evidence that highlights the potential importance of glutamate systems as a target for new medications for the treatment of schizophrenia.”

Dr. Stefanis, explaining the importance of this study, comments that “these findings support the notion that even at the general population level, the genetic liability to psychosis may be expressed as minute and ‘undetected to the naked eye’ alterations in brain information processing capacity and behavior.” Dr. Krystal adds, “Consistent with a growing body of evidence, this study suggests that there may be subtle cognitive impairments that are present when these common risk gene variants are present in the general population.” Clearly, these findings will have an important impact on the future genetic work in this area.

Jayne Dawkins | alfa
Further information:
http://www.elsevier.com/

Further reports about: Population allele cognitive individuals schizophrenia

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>