Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Public-private funding to accelerate biopharmaceutical drug development

28.09.2007
New research funding announced today will help eliminate processing bottlenecks that are slowing the development and manufacture of new biopharmaceuticals.

The Bioprocessing Research Industry Club (BRIC), a public-private collaboration between two Research Councils and the UK biopharmaceutical community, has awarded £3.5 million to researchers at seven universities. The funding will bring new treatments a step closer by helping to develop faster and more efficient development and manufacturing techniques.

Biopharmaceuticals account for 30 per cent of drugs currently in development, and 10 per cent of the current market. Examples of current biopharmaceutical treatments include the use of therapeutic proteins to manage conditions associated with hormone deficiencies or cancers of breast, colon, prostate or pancreatic tissues. In the future, biopharmaceutical treatments may also be able to help with organ and tissue deficiencies or disease conditions associated with ageing. The projects funded by BRIC aim to improve the bioprocessing techniques and systems that underpin biopharmaceutical development and production.

This is the second round of funding awarded by BRIC - a funding collaboration between the Biotechnology and Biological Sciences Research Council (BBSRC), the Engineering and Physical Sciences Research Council (EPSRC) and the UK biopharmaceutical industry, with support from bioProcessUK. It has awarded funding to eight research teams at seven universities: the Universities of Birmingham, Imperial College London, Manchester, Newcastle, Nottingham, Sheffield and Strathclyde.

These projects build on the first round of BRIC funding which supported nine projects at ten universities with funds in excess of £5 million. The third and final call for BRIC will be announced in the next few weeks.

By combining funding from major public funders and industry, BRIC works to support the rapidly growing biological medicines industry in the UK, with the ultimate aim of accelerating therapy development for patients.

Dr John Birch, Chairman of the BRIC steering group and Chief Scientific Officer at Lonza Biologics, said: "Biological drug development offers tremendous promise for patients. The eight new projects funded by BRIC will make a significant contribution to the research underpinning bioprocessing and will help to provide both faster process development and more efficient manufacturing technology for new biopharmaceuticals."

Dr Doug Yarrow, BBSRC Director of Corporate Science said: "The UK has an outstanding research base in bioprocessing and the latest round of BRIC grants further promotes the UK's world-leading status. It is essential that research capabilities are translated into real benefits for patients. BRIC's funding enables this by strengthening the vital links between groundbreaking research in our universities and industry's needs."

Michelle Kilfoyle | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: BRIC Development biopharmaceutical universities

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>