How adhesive protein causes malaria

The knowledge of how the malaria parasite makes blood vessels become sticky paves the way for a future vaccine for the disease, which currently kills some 2 million people every year.

Severe anaemia, respiratory problems and cardiac dysfunction are common and life-threatening symptoms of serious malaria infection. The diseases are caused when the malaria bacteria Plasmodium falciparium infects the red blood cells, which then accumulate in large amounts, blocking the flow of blood in the capillaries of the brain and other organs.

The reason that the blood cells conglomerate and lodge in the blood vessels is that once in the blood cell the parasite produces proteins that project from the surface of the cell and bind with receptor molecules on other blood cells and on the vessel wall, and thus act like a glue. The challenge facing scientists has been to understand why certain proteins produce a stronger adhesive and thus cause more severe malaria.

The research group, which is headed by Professor Mats Wahlgren at the Department of Microbiology, Tumour and Cell Biology, KI, has studied the adhesive protein PfEMP1 in children with severe malaria. The group has identified specific parts of PfEMP1 that are likely to bond more strongly to the receptors in the blood vessels, therefore producing a stronger adhesive effect. What the scientists show in their newly published study is that these protein parts are much more common in parasites that cause particularly severe malaria. If they can identify enough adhesive proteins causing severe malaria, it will be possible to design a vaccine that prepares the body’s own immune defence.

“There are no vaccines yet that can prevent the development of malaria and cure a seriously infected person,” says Professor Wahlgren. “We’ve now discovered a structure that can be used in a vaccine that might be able to help these people.”

The study is a collaboration between Karolinska Institutet, the Swedish Institute for Infectious Disease Control, Makerere University and Medical Biotech Laboratories in Uganda, and has been financed by the Swedish International development cooperation Agency (Sida), the Swedish Research Council and the EU.

Media Contact

Katarina Sternudd alfa

More Information:

http://ki.se

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors