Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How adhesive protein causes malaria

25.09.2007
Researchers at the Swedish medical university Karolinska Institutet (KI) and the Swedish Institute for Infectious Disease Control (SMI) have identified the biochemical mechanism behind the adhesive protein that give rise to particularly serious malaria in children.

The knowledge of how the malaria parasite makes blood vessels become sticky paves the way for a future vaccine for the disease, which currently kills some 2 million people every year.

Severe anaemia, respiratory problems and cardiac dysfunction are common and life-threatening symptoms of serious malaria infection. The diseases are caused when the malaria bacteria Plasmodium falciparium infects the red blood cells, which then accumulate in large amounts, blocking the flow of blood in the capillaries of the brain and other organs.

The reason that the blood cells conglomerate and lodge in the blood vessels is that once in the blood cell the parasite produces proteins that project from the surface of the cell and bind with receptor molecules on other blood cells and on the vessel wall, and thus act like a glue. The challenge facing scientists has been to understand why certain proteins produce a stronger adhesive and thus cause more severe malaria.

... more about:
»Swedish »Vaccine »adhesive »blood cell »severe »vessel

The research group, which is headed by Professor Mats Wahlgren at the Department of Microbiology, Tumour and Cell Biology, KI, has studied the adhesive protein PfEMP1 in children with severe malaria. The group has identified specific parts of PfEMP1 that are likely to bond more strongly to the receptors in the blood vessels, therefore producing a stronger adhesive effect. What the scientists show in their newly published study is that these protein parts are much more common in parasites that cause particularly severe malaria. If they can identify enough adhesive proteins causing severe malaria, it will be possible to design a vaccine that prepares the body’s own immune defence.

“There are no vaccines yet that can prevent the development of malaria and cure a seriously infected person,” says Professor Wahlgren. “We’ve now discovered a structure that can be used in a vaccine that might be able to help these people.”

The study is a collaboration between Karolinska Institutet, the Swedish Institute for Infectious Disease Control, Makerere University and Medical Biotech Laboratories in Uganda, and has been financed by the Swedish International development cooperation Agency (Sida), the Swedish Research Council and the EU.

Katarina Sternudd | alfa
Further information:
http://ki.se

Further reports about: Swedish Vaccine adhesive blood cell severe vessel

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>