Genes determine mate choice

A new study provides support for this idea by looking at lemurs in Madagaskar. Female fat-tailed dwarf lemurs (Cheirogaleus medius) live in life-long pairs, yet notoriously cheat on their partners to improve the genetic fitness of their offspring. Scientists at the Leibniz Institute for Zoo and Wildlife Research in Berlin published the study in the journal Evolutionary Ecology (DOI 10.1007/s10682-007-9186-4).

The team headed by Prof. Simone Sommer looked for possible genetic benefits in the obligate pair-living fat-tailed dwarf lemur which maintains life-long pair bonds but has an extremely high rate of extra-pair paternity. Possible mechanisms of female mate choice were investigated by analyzing overall genetic variability as well as a marker of adaptive significance (major histocompatibility complex, MHC-DRB exon 2). MHC-genes determine not only the individual’s immune response but also the individual’s body odour. This holds true for animals as well as for humans.

The study indicated that females preferred males both as social and as genetic fathers for their offspring if they have a higher number of MHC-alleles and MHC-supertypes, a lower overlap with the female’s MHC-supertypes as well as a higher genome-wide heterozygosity than randomly assigned males. This means that females looked for the most genetically different males preferably with a “healthy” set of genes. Mutual relatedness had no influence on mate choice.

Interestingly, females were most likely to cheat on their social partner if he had a higher overlap with the female’s MHC supertype. Extra-pair mates were chosen mostly for their genetic difference, thus maximising the genetic complementarity of sires to the females.

Media Contact

Josef Zens alfa

More Information:

http://www.izw-berlin.de

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors