Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cystic fibrosis patients may breathe easier, thanks to bioengineered antimicrobials

25.09.2007
By better understanding how antimicrobials bind and thereby get inactivated in the mucus of air passages, researchers at the University of Illinois may have found a way to help cystic fibrosis patients fight off deadly infections.

“While not a cure, this work has potential as a therapeutic strategy against bacterial infections in cystic fibrosis,” said Gerard Wong a professor of materials science and engineering, of physics, and of bioengineering at the U. of I., and a corresponding author of a paper accepted for publication in the Proceedings of the National Academy of Sciences. The paper is to be posted this week on the journal’s Web site.

Ordinarily, pulmonary passages are lined with a thin layer of mucus that traps bacteria and other pathogens. Moved along by the motions of countless cilia, the mucus also acts as a conveyor belt that disposes of the debris.

In patients with cystic fibrosis, however, the mucus is more like molasses – thick and viscous. Because the cilia can no longer move the mucus, the layer becomes stuck, and the bacteria grow, multiply and colonize. Long-term bacterial infections are the primary cause of death in cystic fibrosis.

Using synchrotron X-ray scattering and molecular dynamics simulations, the researchers took a closer look at the mucous mess.

Debris in the infected mucus includes negatively charged, long-chained molecules such as mucin, DNA and actin (from dead white blood cells). It turns out most of the body’s antimicrobials, such as lysozyme, are positively charged.

“We found that actin and lysozyme – two of the most common components in infected mucus – form ordered bundles of aligned molecules, which is something you don’t expect in something as messy as mucus,” said Wong, who also is a researcher at the university’s Beckman Institute. “Held together tightly by the attraction of opposite charge, these bundles basically lock up the antimicrobials so that they are unable to kill bacteria.”

The researchers then developed a computational model to mimic the biological system. “The model accurately predicted the structure of the actin-lysozyme bundles, and agreed quantitatively with the small-angle X-ray scattering experiments,” said Erik Luijten, a professor of materials science and engineering, and of physics, as well as a researcher at the Beckman Institute and the other corresponding author of the PNAS paper.

The next step was to find a way to liberate the lysozyme, or prevent it from binding in the first place. Using their model, the researchers explored the consequences of varying the positive charge on the lysozyme.

“When we reduced the charge, we found a huge effect in our model,” Luijten said. “The lysozyme would not bind to the actin. It floated around independently in the mucus.”

Then, through genetic engineering, the researchers made lysozyme with roughly half the normal charge. Experiments confirmed the simulations; the reduced charge prevented lysozyme from sticking to actin, without significantly reducing the all-important antimicrobial activity.

Although much work remains, future cystic fibrosis patients might use an inhaler to deliver genetically modified charge-reduced antimicrobials to upper airways. There, these ‘non-stick’ antimicrobials would go to work killing bacteria, and mitigate against long-term infection.

The implications of this research extend into other areas as well. In water purification, for example, one of the steps involves putting positively charged molecules in the water to grab negatively charged pollutants. The resulting aggregates settle to the bottom of holding tanks and are removed from the water supply.

“A better understanding of how oppositely charged molecules bind in aqueous environments could lead to ways of removing emerging pathogens in water purification,” Wong said.

Besides Wong and Luijten, co-authors of the paper are postdoctoral research associate and lead author Lori Sanders, lecturer Wujing Xian, graduate student Camilo Guáqueta, and undergraduate students Michael Strohman and Chuck Vrasich.

Funding was provided by the National Institutes of Health, the Cystic Fibrosis Foundation, the National Science Foundation and the U. of I. WaterCAMPWS Science and Technology Center. Portions of the work were carried out at the Stanford Synchrotron Radiation Laboratory and at the Advanced Photon Source.

To reach Gerard Wong, call 217-265-5254; e-mail:
gclwong@uiuc.edu
To reach Erik Luijten, call 217-244-5622; e-mail:
luijten@uiuc.edu

James E. Kloeppel | University of Illinois
Further information:
http://www.uiuc.edu
http://www.news.uiuc.edu/news/07/0924cysticfibrosis.html

Further reports about: Luijten Wong actin antimicrobial cystic cystic fibrosis fibrosis lysozyme mucus patients

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>