Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD study reveals the regulatory mechanism of key enzyme

25.09.2007
Protein kinase A involved in cardiac disease and breast cancer

Research conducted at the University of California, San Diego (UCSD) School of Medicine has shed new light on the structure and function of one of the key proteins in all mammalian cells, protein kinase A (PKA), an enzyme which plays an essential role in memory formation, communication between nerve cells, and cardiac function.

Utilizing a process called x-ray crystallography, the scientists solved the structure of the large PKA complex, revealing a totally new structure that shows PKA’s amazing ability to function as a “scaffold,” that supports and controls the release of chemicals involved in transmitting signals. The structure is shown in the September 21 issue of the journal Cell, featuring the study that describes the dynamic regulatory subunit of PKA.

PKA belongs to a large superfamily of proteins whose activity is regulated by an important small molecule, cyclic AMP (cAMP), in the cell. Protein kinases transmit chemical signals within the cell to regulate a host of functions, such as cell growth or metabolism. Certain protein kinases have been implicated in the uncontrolled growth of cells; for example, when PKA somehow stays “on,” its prolonged activation can lead to cardiac disease and breast cancer.

... more about:
»Kinase »PKA »UCSD »cAMP »cardiac »catalytic »structure

By revealing its highly accurate three-dimensional structure, the UCSD scientists have shown how PKA is inhibited and activated by cAMP. PKA contains two components, the regulatory and catalytic subunits. When the subunits are together in the absence of cAMP, the signaling is turned off; when the two parts break apart after being activated by cAMP, PKA is turned on.

“We knew how the two subunits, the catalytic and regulatory subunits, looked as separate entities. But we didn’t understand how they actually fit together and are activated by cAMP until we saw this structure,” said Susan Taylor, Ph.D., Howard Hughes Medical Institute Investor and professor of pharmacology at UCSD School of Medicine, who headed the study.

Discovery of this enzyme’s molecular structure may help researchers to design drugs that specifically block the protein kinase activity involved in cancer or cardiac disease.

“Scientists didn’t really understand how the structure unfolded before now,” said Taylor, adding that preventing the subunits from coming apart may be an effective way to inhibit diseases caused when PKA is activated and can’t turn itself off. Taylor said the researchers were surprised at how much the structure changed when PKA is turned off. “The regulatory subunit opens up and literally wraps itself around the catalytic subunit, thus completely turning the signal off,” she said.

Taylor is one of the world’s leading experts on the cAMP-dependent protein kinase, an enzyme that serves as a prototype for the entire protein kinase family. This family of enzymes has more than 500 members that are critical for regulation in all multi-cellular organisms, such as humans.

Taylor’s work in 1991 (reported in the July 26, 1991 issue of the journal Science) revealed the first-ever molecular structure of the catalytic subunit of a protein kinase, one involved in the action of adrenalin within cells. Understanding its structure was a sort of Rosetta stone for learning the structure of all protein kinases, because they all share certain fundamental characteristics.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Kinase PKA UCSD cAMP cardiac catalytic structure

More articles from Life Sciences:

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>