Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown Scientists Take the Petri Dish to New Dimensions

21.09.2007
Brown University biomedical engineers have created a new method for growing cells in three dimensions rather than the traditional two. This 3-D Petri dish allows cells to self-assemble, creating cell clusters that can be transplanted in the body or used to test drugs in the lab. This simple new technique is part of a growing body of research that shows that 3-D culture techniques can create cells that behave more like cells in the body.

A team of Brown University biomedical engineers has invented a 3-D Petri dish that can grow cells in three dimensions, a method that promises to quickly and cheaply produce more realistic cells for drug development and tissue transplantation.

The technique employs a new dish – cleverly crafted from a sugary substance long used in science laboratories – that allows cells to self-assemble naturally and form “microtissues.” A description of how the 3-D dish works appears in the journal Tissue Engineering.

“It’s a new technology with a lot of promise to improve biomedical research,” said Jeffrey Morgan, a Brown professor of medical science and engineering.

Morgan conceived and created the 3-D Petri dish with a team of Brown students led by Anthony Napolitano, a Ph.D. candidate in the biomedical engineering program. Napolitano spent two years perfecting the new dish and recently won a $15,000 award from the National Collegiate Inventors and Innovators Alliance to develop the patent-pending technology into a commercially viable product.

“This technology is an inexpensive and easy-to-use alternative to current 3-D cell culture methods,” Napolitano said. “It’s the next generation.”

The technology tackles a topic of increasing interest to scientists: creating hothouse cells that look and behave more like cells grown in the human body. Since 1877, scientists have relied on the Petri dish to grow, or culture, cells. The cells stick to the bottom of the dishes and spread out as they multiply. In the body, however, cells don’t grow that way. They are surrounded by other cells in three dimensions, forming tissues such as skin, muscle, and bone. This is what happens in Morgan’s 3-D dish.

The clear, rubbery dish is the size of a silver dollar. It is made from a water-based gel made of agarose, a complex carbohydrate long used in molecular biology. This gel has a few benefits. It is porous, allowing nutrients and waste to circulate. And it is non-adhesive, so cells won’t stick to it. At the bottom of the dish sit 820 tiny recesses or wells. When cells are added to the dish –about 1 million at a time – roughly 1,000 sink to the bottom of each well and form a pile. These close quarters allow cells to self-assemble, or form natural cell-to-cell connections, a process not possible in traditional Petri dishes.

The result: microtissues consisting of hundreds of cells, even of different types. In Tissue Engineering, the Brown team describes how they combined human fibroblasts, which make connective tissue, and endothelial cells, which line the heart and blood vessels. The cells came together to form spheres and doughnut-shaped clusters. The process was quick – self-assembly took place in less than 24 hours.

“These microtissues have several potential uses,” Morgan said. “They can be used to test new cancer compounds and other drugs. And they can be transplanted into the body to regenerate tissue, such as pancreatic cells for diabetics. While there are other methods out there for making microtissues, our 3-D technology is fast, easy and inexpensive. It can make hundreds of thousands of microtissues in a single step.”

Differences in culture techniques matter in biomedicine, according to a growing body of research. Studies show sometimes dramatic differences in the shape, function and growth patterns of cells cultured in 2-D compared with cells cultured in 3-D. For example, a recent Brown study found that nerve cells grown in 3-D environments grew faster, had a more realistic shape and deployed hundreds of different genes compared to cells grown in 2-D environments.

That’s why several laboratories are pursuing 3-D cell culture methods. Brown Technology Partnerships has filed a patent application based on the technology developed in the Morgan lab and is actively pursuing licensing partners.

Napolitano was lead author of the Tissue Engineering article, and Morgan was senior author. Other members of the research team included Peter Chai, a student at The Warren Alpert Medical School of Brown University and Dylan Dean, an M.D./Ph.D. graduate student in the molecular pharmacology and physiology program.

The National Science Foundation funded the research.

Wendy Lawton | Brown University
Further information:
http://www.brown.edu

Further reports about: 3-D Biomedical Petri dish Technology Tissue method microtissues

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>