Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New antibiotic drug combo to speed up treatment of tuberculosis

19.09.2007
A team of tuberculosis (TB) experts at Johns Hopkins and in Brazil have evidence that substituting the antibiotic moxifloxacin in the regimen of drugs used to treat the highly contagious form of lung disease could dramatically shorten the time needed to cure the illness from six months to four.

Adding moxifloxacin to a standard combination of other antibiotics increased by 17 percent the number of patients who cleared active infections from their lungs (raising cure rates from 68 percent to 85 percent), after just two months of therapy, and when compared to patients taking the standard combination with another, older antibiotic, ethambutol.

“This is the most compelling evidence in nearly 25 years that a novel antibiotic drug combination works better than the current gold standard at curing active TB infection,” says study senior author Richard E. Chaisson, M.D., a professor of medicine, epidemiology and international health at The Johns Hopkins University School of Medicine and founding director of its Center for Tuberculosis Research. Chaisson will present his team’s findings Sept. 18 in Chicago at the 47th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC).

“Beyond the obvious value of healing patients more quickly, a shorter treatment time could also cut down on transmission of the disease to others and make it easier for health care workers worldwide, who are overwhelmed by large numbers of patients, to treat more people and to treat them faster,” says Chaisson, who started the study in 2003.

He notes that worldwide, each year, nearly 9 million new cases of TB are diagnosed, and more than one and a half million people die from the disease, caused by Mycobacterium tuberculosis.

TB also remains the leading cause of death worldwide among those with HIV and AIDS and is epidemic in developing countries with the highest HIV-infection rates.

The new study of more than 170 men and women in Rio de Janeiro, Brazil – all with active TB – showed that combination drug therapy with moxifloxacin was more potent than combination therapy with an older, more traditional anti-TB drug, ethambutol. Symptoms of active TB include fever, cough, night sweats and weight loss.

After two months of combination therapy, cultured sputum samples from patients taking moxifloxacin were significantly less likely to grow TB bacteria than samples from those on traditional ethambutol therapy. The time to clear the infectious organism from sputum was also significantly shorter in the moxifloxacin group.

Conventional TB therapy prescribes a mix of antibiotics, typically four, given in view of a caregiver and taken together for six months. Commonly known by its acronym DOTS, short for Directly Observed Therapy Short-Course, the treatment cures on average 95 percent of patients who finish taking their medications as originally prescribed.

But experts say the lengthy treatment period has proven a problem for patients, who sometimes miss taking their drugs on time, minimizing the therapy’s effectiveness and increasing the risk that drug-resistant strains will develop.

History, says Chaisson, demonstrates that shorter regimens boost drug compliance and cure rates, often by as much as 50 percent. In the 1950s, TB treatment lasted from 18 to 24 months, and nearly a quarter of patients failed to complete therapy. It was not until new drugs appeared in the 1970s and 1980s, when treatment times were shortened to an average of six months, that cure rates shot up.

In the latest study, all participants were given a standard combination of three antibiotic pills – isoniazid, rifampin, and pyrazinaminde – and then randomly assigned to receive a fourth pill, either moxifloxacin or ethambutol. Moxifloxacin, approved for use in the United States since 1999 as a treatment for pneumonia, is not currently approved as a treatment for TB. However, ethambutol has been approved to treat TB since 1962.

The three combination drugs, which must be taken several times daily for six to eight months, have all been widely used to treat TB disease for decades: isoniazid (since 1952), rifampin (1968) and pyrazinamide (1954).

“It was remarkable to see just how potent moxifloxacin was,” says Chaisson. After just two weeks of therapy with moxifloxacin, 21 percent of the sputum samples were negative and cleared of visible disease, while in the ethambutol study group, it was just 3 percent. After four weeks, the gap widened to 51 percent and 29 percent, respectively.

Chaisson says substituting moxifloxacin for one of the key ingredients in DOTS could also make treatment far less costly overall, allowing TB programs to expand their coverage. The medication currently costs $10 per day for short-term use, but the researcher says the drug’s manufacturer, Bayer Healthcare AG, has promised to make the drug available at affordable prices in poor countries should it gain approval for use in TB.

Chaisson and his team next plan to investigate a potentially even more potent drug combination that includes traditional DOTS drugs with yet another substitution, rifapentine in place of rifampin. Rifapentine became available in the United States in 1998 and scientists say it is more effective against drug-resistant strains of TB.

Chaisson and colleagues conducted their research with funding from the U.S. Food and Drug Administration’s Office of Orphan Product Development. The study was part of a series of studies on moxifloxacin that are being coordinated by the nonprofit Global Alliance for TB Drug Development (GATB) in collaboration with Bayer.

The GATB estimates that 1 billion people worldwide will be infected with tuberculosis by the year 2020, of whom 200 million will fall ill and 35 million will die.

As part of the research program, Bayer donated supplies of moxifloxacin.

David March | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.icaac.org/
http://www.hopkinsmedicine.org/dom/tb_lab/

Further reports about: Chaisson Ethambutol Tuberculosis antibiotic combination moxifloxacin

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>