Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetic Retinopathy: A Variant Of A Growth Factor Responsible For Abnormal Blood Vessel Growth And Eye Damages

19.09.2007
Targeting the inflammation caused by VEGF could give better quality of life to patients affected by this progressive disease, say UK scientists

A variant form of a common growth factor, called VEGF (vascular endothelial growth factor) was identified that is responsible for the inflammation and altered retinal vascularisation that occurs in diseases such as diabetic retinopathy (DR). It could become the target for novel therapies that will help to solve, or at least to ease, a pathology which is poorly treatable by common drugs. The announcement was made yesterday by Professor David T. Shima, Group Leader at the University College of London, Institute of Ophthalmology, at the European Meeting on Vascular Biology and Medicine, held in parallel with the Fourth Annual Meeting of EVGN (www.evgn.org), network of excellence on cardiovascular disease.

Diabetic retinopathy is a leading cause of blindness and is characterized by the invasive growth and abnormal function of blood vessels within the retina, that obstructs vision and triggers other unwanted effects. With an estimate of 500.000 new cases of severe disease per year in Western Countries it is rightly considered a sanitary priority. Many research groups are focussing on potential targets, but so far no effective pharmacological approaches have been proven to substitute the current (destructive) surgical therapies.

David T. Shima and colleagues focused on a growth factor known to be produced during ischemic conditions, when the eye suffers from lack of oxygen. VEGF, this is its name, counterbalances this condition by promoting blood vessel growth. In diabetic retinopathy VEGF is part of an adaptive response to ischemia, that unfortunately in the long run becomes noxious per se.

... more about:
»VEGF »retinopathy »vascular cells »vessel

“We observed – explained the scientist – that, blood vessels in the ischemic retina do regrow but in a disorganized way: they form clumps instead of a fine mesh-like network. UK scientists asked why and clarified the role of VEGF.

“We decided to further characterize the VEGF activity responsible for the abnormal response and identified one alternative form (or isoform) called VEGF 164, that drives not only ocular neovascularization and vascular permeability, but also an undesirable inflammatory reaction. When this form is genetically or pharmaceutically inhibited the pathological neovascularization is inhibited as well, and blood vessels sprout normally”. Further analysis spotted a specific region within this molecule that is the major cause of inflammation, another characteristic of DR. Again, mutations in this region abolish the undesired pro-inflammatory effects

“Certainly, the inflammatory function of VEGF 164 represents a promising target for the treatment of diabetic retinopathy. However there is one problem to solve: VEGF has a second, beneficial role as it protects neurons from ischemic death. Its complete elimination would trigger unwanted consequences and further research is needed to understand this apparent contradiction. Better understanding of the risks and benefits could pave the way for the treatment of this sight-threatening human disease”.

Run jointly with the European Vascular Biology Organization (EVBO) and the British Atherosclerosis Society and articulated over a three day period (September 17-20), the EVGN Meeting will take place in parallel with the 4th European Meeting on Vascular Biology and Medicine (EMVBM), gathering more than 400 scientists from all over Europe with representatives from the rest of the world.

The European Vascular Genomics Network (EVGN) is the first Network of excellence on cardiovascular disease funded by the European Commission under the 6th Framework Programme "Life sciences, genomics and biotechnology for health" (Contract Number: LSHMCT- 2003-503254).

The Conference is supported by an unrestricted educational grant from Laboratoires SERVIER.

Francesca Noceti | alfa
Further information:
http://www.evgn.org/
http://www.ifom-ieo-campus.it

Further reports about: VEGF retinopathy vascular cells vessel

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>