Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetic Retinopathy: A Variant Of A Growth Factor Responsible For Abnormal Blood Vessel Growth And Eye Damages

19.09.2007
Targeting the inflammation caused by VEGF could give better quality of life to patients affected by this progressive disease, say UK scientists

A variant form of a common growth factor, called VEGF (vascular endothelial growth factor) was identified that is responsible for the inflammation and altered retinal vascularisation that occurs in diseases such as diabetic retinopathy (DR). It could become the target for novel therapies that will help to solve, or at least to ease, a pathology which is poorly treatable by common drugs. The announcement was made yesterday by Professor David T. Shima, Group Leader at the University College of London, Institute of Ophthalmology, at the European Meeting on Vascular Biology and Medicine, held in parallel with the Fourth Annual Meeting of EVGN (www.evgn.org), network of excellence on cardiovascular disease.

Diabetic retinopathy is a leading cause of blindness and is characterized by the invasive growth and abnormal function of blood vessels within the retina, that obstructs vision and triggers other unwanted effects. With an estimate of 500.000 new cases of severe disease per year in Western Countries it is rightly considered a sanitary priority. Many research groups are focussing on potential targets, but so far no effective pharmacological approaches have been proven to substitute the current (destructive) surgical therapies.

David T. Shima and colleagues focused on a growth factor known to be produced during ischemic conditions, when the eye suffers from lack of oxygen. VEGF, this is its name, counterbalances this condition by promoting blood vessel growth. In diabetic retinopathy VEGF is part of an adaptive response to ischemia, that unfortunately in the long run becomes noxious per se.

... more about:
»VEGF »retinopathy »vascular cells »vessel

“We observed – explained the scientist – that, blood vessels in the ischemic retina do regrow but in a disorganized way: they form clumps instead of a fine mesh-like network. UK scientists asked why and clarified the role of VEGF.

“We decided to further characterize the VEGF activity responsible for the abnormal response and identified one alternative form (or isoform) called VEGF 164, that drives not only ocular neovascularization and vascular permeability, but also an undesirable inflammatory reaction. When this form is genetically or pharmaceutically inhibited the pathological neovascularization is inhibited as well, and blood vessels sprout normally”. Further analysis spotted a specific region within this molecule that is the major cause of inflammation, another characteristic of DR. Again, mutations in this region abolish the undesired pro-inflammatory effects

“Certainly, the inflammatory function of VEGF 164 represents a promising target for the treatment of diabetic retinopathy. However there is one problem to solve: VEGF has a second, beneficial role as it protects neurons from ischemic death. Its complete elimination would trigger unwanted consequences and further research is needed to understand this apparent contradiction. Better understanding of the risks and benefits could pave the way for the treatment of this sight-threatening human disease”.

Run jointly with the European Vascular Biology Organization (EVBO) and the British Atherosclerosis Society and articulated over a three day period (September 17-20), the EVGN Meeting will take place in parallel with the 4th European Meeting on Vascular Biology and Medicine (EMVBM), gathering more than 400 scientists from all over Europe with representatives from the rest of the world.

The European Vascular Genomics Network (EVGN) is the first Network of excellence on cardiovascular disease funded by the European Commission under the 6th Framework Programme "Life sciences, genomics and biotechnology for health" (Contract Number: LSHMCT- 2003-503254).

The Conference is supported by an unrestricted educational grant from Laboratoires SERVIER.

Francesca Noceti | alfa
Further information:
http://www.evgn.org/
http://www.ifom-ieo-campus.it

Further reports about: VEGF retinopathy vascular cells vessel

More articles from Life Sciences:

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Big data approach to predict protein structure
27.03.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>