Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetic Retinopathy: A Variant Of A Growth Factor Responsible For Abnormal Blood Vessel Growth And Eye Damages

19.09.2007
Targeting the inflammation caused by VEGF could give better quality of life to patients affected by this progressive disease, say UK scientists

A variant form of a common growth factor, called VEGF (vascular endothelial growth factor) was identified that is responsible for the inflammation and altered retinal vascularisation that occurs in diseases such as diabetic retinopathy (DR). It could become the target for novel therapies that will help to solve, or at least to ease, a pathology which is poorly treatable by common drugs. The announcement was made yesterday by Professor David T. Shima, Group Leader at the University College of London, Institute of Ophthalmology, at the European Meeting on Vascular Biology and Medicine, held in parallel with the Fourth Annual Meeting of EVGN (www.evgn.org), network of excellence on cardiovascular disease.

Diabetic retinopathy is a leading cause of blindness and is characterized by the invasive growth and abnormal function of blood vessels within the retina, that obstructs vision and triggers other unwanted effects. With an estimate of 500.000 new cases of severe disease per year in Western Countries it is rightly considered a sanitary priority. Many research groups are focussing on potential targets, but so far no effective pharmacological approaches have been proven to substitute the current (destructive) surgical therapies.

David T. Shima and colleagues focused on a growth factor known to be produced during ischemic conditions, when the eye suffers from lack of oxygen. VEGF, this is its name, counterbalances this condition by promoting blood vessel growth. In diabetic retinopathy VEGF is part of an adaptive response to ischemia, that unfortunately in the long run becomes noxious per se.

... more about:
»VEGF »retinopathy »vascular cells »vessel

“We observed – explained the scientist – that, blood vessels in the ischemic retina do regrow but in a disorganized way: they form clumps instead of a fine mesh-like network. UK scientists asked why and clarified the role of VEGF.

“We decided to further characterize the VEGF activity responsible for the abnormal response and identified one alternative form (or isoform) called VEGF 164, that drives not only ocular neovascularization and vascular permeability, but also an undesirable inflammatory reaction. When this form is genetically or pharmaceutically inhibited the pathological neovascularization is inhibited as well, and blood vessels sprout normally”. Further analysis spotted a specific region within this molecule that is the major cause of inflammation, another characteristic of DR. Again, mutations in this region abolish the undesired pro-inflammatory effects

“Certainly, the inflammatory function of VEGF 164 represents a promising target for the treatment of diabetic retinopathy. However there is one problem to solve: VEGF has a second, beneficial role as it protects neurons from ischemic death. Its complete elimination would trigger unwanted consequences and further research is needed to understand this apparent contradiction. Better understanding of the risks and benefits could pave the way for the treatment of this sight-threatening human disease”.

Run jointly with the European Vascular Biology Organization (EVBO) and the British Atherosclerosis Society and articulated over a three day period (September 17-20), the EVGN Meeting will take place in parallel with the 4th European Meeting on Vascular Biology and Medicine (EMVBM), gathering more than 400 scientists from all over Europe with representatives from the rest of the world.

The European Vascular Genomics Network (EVGN) is the first Network of excellence on cardiovascular disease funded by the European Commission under the 6th Framework Programme "Life sciences, genomics and biotechnology for health" (Contract Number: LSHMCT- 2003-503254).

The Conference is supported by an unrestricted educational grant from Laboratoires SERVIER.

Francesca Noceti | alfa
Further information:
http://www.evgn.org/
http://www.ifom-ieo-campus.it

Further reports about: VEGF retinopathy vascular cells vessel

More articles from Life Sciences:

nachricht In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings
20.02.2018 | University of Cambridge

nachricht Computers aid discovery of new, inexpensive material to make LEDs with high color quality
20.02.2018 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast

20.02.2018 | Power and Electrical Engineering

Hidden talents: Converting heat into electricity with pencil and paper

20.02.2018 | Materials Sciences

Rare find from the deep sea

20.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>