Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetic Retinopathy: A Variant Of A Growth Factor Responsible For Abnormal Blood Vessel Growth And Eye Damages

19.09.2007
Targeting the inflammation caused by VEGF could give better quality of life to patients affected by this progressive disease, say UK scientists

A variant form of a common growth factor, called VEGF (vascular endothelial growth factor) was identified that is responsible for the inflammation and altered retinal vascularisation that occurs in diseases such as diabetic retinopathy (DR). It could become the target for novel therapies that will help to solve, or at least to ease, a pathology which is poorly treatable by common drugs. The announcement was made yesterday by Professor David T. Shima, Group Leader at the University College of London, Institute of Ophthalmology, at the European Meeting on Vascular Biology and Medicine, held in parallel with the Fourth Annual Meeting of EVGN (www.evgn.org), network of excellence on cardiovascular disease.

Diabetic retinopathy is a leading cause of blindness and is characterized by the invasive growth and abnormal function of blood vessels within the retina, that obstructs vision and triggers other unwanted effects. With an estimate of 500.000 new cases of severe disease per year in Western Countries it is rightly considered a sanitary priority. Many research groups are focussing on potential targets, but so far no effective pharmacological approaches have been proven to substitute the current (destructive) surgical therapies.

David T. Shima and colleagues focused on a growth factor known to be produced during ischemic conditions, when the eye suffers from lack of oxygen. VEGF, this is its name, counterbalances this condition by promoting blood vessel growth. In diabetic retinopathy VEGF is part of an adaptive response to ischemia, that unfortunately in the long run becomes noxious per se.

... more about:
»VEGF »retinopathy »vascular cells »vessel

“We observed – explained the scientist – that, blood vessels in the ischemic retina do regrow but in a disorganized way: they form clumps instead of a fine mesh-like network. UK scientists asked why and clarified the role of VEGF.

“We decided to further characterize the VEGF activity responsible for the abnormal response and identified one alternative form (or isoform) called VEGF 164, that drives not only ocular neovascularization and vascular permeability, but also an undesirable inflammatory reaction. When this form is genetically or pharmaceutically inhibited the pathological neovascularization is inhibited as well, and blood vessels sprout normally”. Further analysis spotted a specific region within this molecule that is the major cause of inflammation, another characteristic of DR. Again, mutations in this region abolish the undesired pro-inflammatory effects

“Certainly, the inflammatory function of VEGF 164 represents a promising target for the treatment of diabetic retinopathy. However there is one problem to solve: VEGF has a second, beneficial role as it protects neurons from ischemic death. Its complete elimination would trigger unwanted consequences and further research is needed to understand this apparent contradiction. Better understanding of the risks and benefits could pave the way for the treatment of this sight-threatening human disease”.

Run jointly with the European Vascular Biology Organization (EVBO) and the British Atherosclerosis Society and articulated over a three day period (September 17-20), the EVGN Meeting will take place in parallel with the 4th European Meeting on Vascular Biology and Medicine (EMVBM), gathering more than 400 scientists from all over Europe with representatives from the rest of the world.

The European Vascular Genomics Network (EVGN) is the first Network of excellence on cardiovascular disease funded by the European Commission under the 6th Framework Programme "Life sciences, genomics and biotechnology for health" (Contract Number: LSHMCT- 2003-503254).

The Conference is supported by an unrestricted educational grant from Laboratoires SERVIER.

Francesca Noceti | alfa
Further information:
http://www.evgn.org/
http://www.ifom-ieo-campus.it

Further reports about: VEGF retinopathy vascular cells vessel

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>