Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How ecstasy can kill brain neurons by cutting their power supply

19.09.2007
Research by Portuguese scientists reveals how ecstasy can compromise the neurons in the brain by damaging their mitochondria – the structures responsible for energy production in the cell - causing the equivalent to a “power-cut” on the affected neurons.

The work to be published in the Journal of Neuroscience[1] also reveals that a drug used in Parkinson’s disease is capable of prevent this damage. By showing how ecstasy can directly compromise such a crucial cellular process the research might help an eventual resolution of the two decade-long debate over whether or not ecstasy use is dangerous.

MDMA (the main component of ecstasy) leads to the production and accumulation of serotonin, a feel-good chemical, which is behind the pleasant effects of the drug. But scientists also know that ecstasy leads to excessive, and most probably toxic quantities of serotonin accumulating in the nerve endings. How this affected ecstasy users, however, was until now not known..

But the Portuguese researchers Ema Alves, Teresa Summavielle, Félix Carvalho and colleagues from the University of Porto and the Porto Polytechnic Institute.

It was known that neurons that produce serotonin eliminate its excess by using monoamine oxidase (MAO), a type of enzyme (enzymes are proteins that mediate chemical reactions) that as it destroys serotonin produces hydrogen peroxide (H2O2). And H2O2 can lead to the formation of free radicals – toxic molecules that when in high quantities can damage the cell components, including DNA, by oxidising them in the same reaction that leads iron to rust. What Alves, Summavielle, Carvalho and colleagues also realised is that in serotonin-producing neurons the existing MAO – which is called MAO-B - is found on the membrane of mitochondria, the structures where nutrients are converted into the energy used by the cell.

Alves and colleagues’ hypothesis was that in these neurons MAO-B, while eliminating the excessive serotonin released in response to ecstasy consume, would produced toxic quantities of free radicals on the mitochondrial membrane. This toxic accumulation could, by affecting the cell energy-producing machine, result in neural death as affected neurons would be incapable of performing basic cellular reactions..

In order to test this hypothesis the team of researchers used four groups of adolescent rats: a group was treated with MDMA, another with MDMA and selegiline – a drug known to block MAO-B activity – and the remaining two served as control. The control groups included one set treated with selegiline alone in order to assure that selegiline had no effect beside MAO-B blocking, and another with an innocuous substance. After some time the animals’ brains were removed and the mitochondria of serotonin-producing neurons analysed. Adolescent rats were used since teenager abusers – ecstasy main users –have particularly vulnerable cerebral and hormonal systems in result of not being yet fully mature.

As hypothesised MDMA-treated rats showed serious damage in their mitochondria including the loss of entire pieces of DNA – mitocondrial DNA codes for proteins involved in the energy-producing process –compromising the whole energetic machine.

On the other hand, animals treated with MDMA and selegiline did not have any signs of mitochondrial problems confirming the importance of MAO-B in MDMA-induced damage. Interestingly, it was seen that MDMA also increase the rats’ body temperature– a hallmark effect of ecstasy – but this was not associated with the mitochondrial damage suggesting that ecstasy was toxic at other levels too.

Ecstasy, or 3,4 methylenedioxymethamphetamine appeared in the raves of the 1980s and although much studied in the last two decades its dangerousness continues to be debated due to the lack of conclusive results. The drug seems to be toxic for neurons (at least in non-humans laboratory models) and has been shown to kill animals but then, relatively few people have died from taking it and those that did it was mostly due to the heatstroke induced by the drug causing respiratory failure. Nevertheless, several studies have suggested that long-term ecstasy users seem to present serious memory loss.

Alves, Summavielle, Carvalho and colleagues’ results reveals a mechanism by which ecstasy leads to “power-cuts” in the brain neurons, compromising their activity and survival. Not only that but this effect was seen in the serotonin-produced neurons and serotonin is known to be involved in memory, which is believed can be compromised by the drug. As consequence the researchers are now investigating if those long-time users of the drug with signs of memory loss show alterations in their mitochondria/serotonin-producing neurons.

Teresa Summavielle, one of the researchers says "We hope that this findings can help convince ecstasy' users, mainly adolescents, that ecstasy really affects the way our brain functions.”

Catarina Amorim | alfa
Further information:
http://www.jneurosci.org/

Further reports about: Ecstasy MAO-B MDMA Serotonin Summavielle mitochondria neurons reaction selegiline toxic

More articles from Life Sciences:

nachricht Researchers reveal new details on aged brain, Alzheimer's and dementia
21.11.2017 | Allen Institute

nachricht Nanoparticles help with malaria diagnosis – new rapid test in development
21.11.2017 | Fraunhofer-Institut für Silicatforschung ISC

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020

21.11.2017 | Physics and Astronomy

Borophene shines alone as 2-D plasmonic material

21.11.2017 | Materials Sciences

Penn study identifies new malaria parasites in wild bonobos

21.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>