Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A molecule that protects from neuronal disorders

17.09.2007
Researchers discover a protein required for the normal development of the cerebral cortex and to prevent defects associated with mental retardation

Many neuronal disorders, including epilepsy, schizophrenia and lissencephaly – a form of mental retardation -, result from abnormal migration of nerve cells during the development of the brain.

Researchers from the Mouse Biology Unit of the European Molecular Biology Laboratory (EMBL) in Italy, have now discovered that a protein that helps organising the cells’ skeleton is crucial for preventing such defects. In the current issue of Genes & Development they report that mice lacking the protein show symptoms of lissencephaly brought about by faulty development of the cerebral cortex, the brain’s surface layer.

The cerebral cortex is a complex structure with many important functions and a very unique architecture consisting of different cell types arranged in a specific order of layers. During embryonic development the cortical layers are generated by neuronal progenitor cells that migrate long distances before they settle down in a given layer. The spatial organisation in cell layers is essential to cortical functions. When the layer architecture is disturbed, like in the case of lissencephaly where entire layers are missing, the consequences are mental retardation, muscle spasms and seizures. The new study by a team of EMBL researchers reveals that a molecule called n-cofilin can play a key role in the disease.

“We genetically engineered mice that lack n-cofilin and they show the same anatomical defects and symptoms as patients suffering from lissencephaly,” says Walter Witke, whose team carried out the research. “Their brains miss several cortical layers because neurons do not migrate normally during development.”

The ability of neurons to migrate is largely brought about by the dynamic properties of their skeleton. The skeleton of a cell consists of constantly growing and shrinking filaments that function like strings and struts to give the cell shape and stability. N-cofilin interacts with one kind of filaments, called actin filaments, and helps to disassemble them into their individual building blocks. Interfering with this filament remodeling impairs the cell’s ability to move and thus blocks migration of neurons during cortical development.

N-cofilin also controls the fate of neural stem cells, which are involved in development of the cortex. In its absence more stem cells stop to self-renew and instead start differentiating. This imbalance depletes the pool of neuronal progenitors so that fewer cells can be made to build a complete and functional cortex. The study provides the first proof that proteins affecting actin filament dynamics are involved in neuronal migration disorders.

“This might have implications for humans, too,” says Gian Carlo Bellenchi from Witke’s lab. “Like many other cytoskeletal proteins n-cofilin is conserved between mice and humans and it is likely to play a similar role in the development of the human cortex.”

This makes the gene encoding n-cofilin an interesting candidate that might be mutated in neuronal disorders such as lissencephaly and other forms of mental retardation.

“The mouse model is a powerful tool to further investigate the roles n-cofilin and the actin cytoskeleton play in stem cell physiology and cell migration. Our studies also identified n-cofilin as a potential target molecule that might allow to interfere with stem cell function in diseases where stem cell division has derailed,” concludes Christine Gurniak from Witke’s group.

Published online in Genes & Development on 15 September 2007.

Anna-Lynn Wegener
Press Officer
EMBL
Meyerhofstrasse 1
D-69117 Heidelberg
tel. +49-6221-3878452
fax +49-6221-387525
wegener@embl.de

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.org/aboutus/news/press/2007/15sept07/

Further reports about: Filament Migration Molecule Neuronal lissencephaly n-cofilin retardation

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>