Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A molecule that protects from neuronal disorders

17.09.2007
Researchers discover a protein required for the normal development of the cerebral cortex and to prevent defects associated with mental retardation

Many neuronal disorders, including epilepsy, schizophrenia and lissencephaly – a form of mental retardation -, result from abnormal migration of nerve cells during the development of the brain.

Researchers from the Mouse Biology Unit of the European Molecular Biology Laboratory (EMBL) in Italy, have now discovered that a protein that helps organising the cells’ skeleton is crucial for preventing such defects. In the current issue of Genes & Development they report that mice lacking the protein show symptoms of lissencephaly brought about by faulty development of the cerebral cortex, the brain’s surface layer.

The cerebral cortex is a complex structure with many important functions and a very unique architecture consisting of different cell types arranged in a specific order of layers. During embryonic development the cortical layers are generated by neuronal progenitor cells that migrate long distances before they settle down in a given layer. The spatial organisation in cell layers is essential to cortical functions. When the layer architecture is disturbed, like in the case of lissencephaly where entire layers are missing, the consequences are mental retardation, muscle spasms and seizures. The new study by a team of EMBL researchers reveals that a molecule called n-cofilin can play a key role in the disease.

“We genetically engineered mice that lack n-cofilin and they show the same anatomical defects and symptoms as patients suffering from lissencephaly,” says Walter Witke, whose team carried out the research. “Their brains miss several cortical layers because neurons do not migrate normally during development.”

The ability of neurons to migrate is largely brought about by the dynamic properties of their skeleton. The skeleton of a cell consists of constantly growing and shrinking filaments that function like strings and struts to give the cell shape and stability. N-cofilin interacts with one kind of filaments, called actin filaments, and helps to disassemble them into their individual building blocks. Interfering with this filament remodeling impairs the cell’s ability to move and thus blocks migration of neurons during cortical development.

N-cofilin also controls the fate of neural stem cells, which are involved in development of the cortex. In its absence more stem cells stop to self-renew and instead start differentiating. This imbalance depletes the pool of neuronal progenitors so that fewer cells can be made to build a complete and functional cortex. The study provides the first proof that proteins affecting actin filament dynamics are involved in neuronal migration disorders.

“This might have implications for humans, too,” says Gian Carlo Bellenchi from Witke’s lab. “Like many other cytoskeletal proteins n-cofilin is conserved between mice and humans and it is likely to play a similar role in the development of the human cortex.”

This makes the gene encoding n-cofilin an interesting candidate that might be mutated in neuronal disorders such as lissencephaly and other forms of mental retardation.

“The mouse model is a powerful tool to further investigate the roles n-cofilin and the actin cytoskeleton play in stem cell physiology and cell migration. Our studies also identified n-cofilin as a potential target molecule that might allow to interfere with stem cell function in diseases where stem cell division has derailed,” concludes Christine Gurniak from Witke’s group.

Published online in Genes & Development on 15 September 2007.

Anna-Lynn Wegener
Press Officer
EMBL
Meyerhofstrasse 1
D-69117 Heidelberg
tel. +49-6221-3878452
fax +49-6221-387525
wegener@embl.de

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.org/aboutus/news/press/2007/15sept07/

Further reports about: Filament Migration Molecule Neuronal lissencephaly n-cofilin retardation

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>