Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The importance of gene regulation for common human disease

17.09.2007
A new study published in Nature Genetics on Sunday 16 September 2007 show that common, complex diseases are more likely to be due to genetic variation in regions that control activity of genes, rather than in the regions that specify the protein code.

This surprising result comes from a study at the Wellcome Trust Sanger Institute of the activity of almost 14,000 genes in 270 DNA samples collected for the HapMap Project. The authors looked at 2.2 million DNA sequence variants (SNPs) to determine which affected gene activity.

They found that activity of more than 1300 genes was affected by DNA sequence changes in regions predicted to be involved in regulating gene activity, which often lie close to, but outside, the protein-coding regions.

"We predict that variants in regulatory regions make a greater contribution to complex disease than do variants that affect protein sequence," explained Dr Manolis Dermitzakis, senior author from the Wellcome Trust Sanger Institute. "This is the first study on this scale and these results are confirming our intuition about the nature of natural variation in complex traits.

... more about:
»Complex »DNA »HapMap »Variation »regulatory

"One of the challenges of large-scale studies that link a DNA variant to a disease is to determine how the variant causes the disease: our analysis will help to develop that understanding, a vital step on the path from genetics to improvements in healthcare."

Past studies of rare, monogenic disease, such as cystic fibrosis and sickle-cell anaemia, have focused on changes to the protein-coding regions of genes because they have been visible to the tools of human genetics. With the HapMap and large-scale research methods, researchers can inspect the role of regions that regulate activity of many thousands of genes.

The HapMap Project established cell cultures from participants from four populations as well as, for some samples, information from families, which can help to understand inheritance of genetic variation. The team used these resources to study gene activity in the cell cultures and tie that to DNA sequence variation

‘We have generated an information resource readily available to investigators working in the mapping of variants underlying complex traits. Regions of association can be correlated with signatures of regulatory regions affecting gene expression' explained Dr Panos Deloukas, Senior Investigator at the Wellcome Trust Sanger Institute

"We found strong evidence that SNP variation close to genes - where most regulatory regions lie - could have a dramatic effect on gene activity," said Dr Barbara Stranger, postdoctoral fellow at WT Sanger Institute. "Although many effects were shared among all four HapMap populations, we have also shown that a significant number were restricted to one population."

They also showed that genes required for the basic functions of the cell - so-called housekeeping genes - were less likely to be subject to genetic variation. "This was exactly as we would expect: you can't mess too much with the fundamental life processes and we predicted we would find reduced effects on these genes," said Dr Dermitzakis.

The study also detected SNP variants that affect the activity of genes located a great distance away. Genetic regulation in the human genome is complex and highly variable: a tool to detect such distant effects will expand the search for causative variants. The authors note, however, that the small sample size of 270 HapMap individuals is sensitive enough to detect only the strongest effects.

The results of this study are becoming available in public databases such as Ensembl for researchers to use.

The paper is accompanied by two others examining effects of changes to regulatory DNA in samples from asthma and from heart study patients.

Don Powell | alfa
Further information:
http://www.sanger.ac.uk
http://www.wellcome.ac.uk/

Further reports about: Complex DNA HapMap Variation regulatory

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>