Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight into the mechanisms of voltage sensing and transduction in biological processes

17.09.2007
The voltage sensor of voltage-gated ion channels is a conserved protein domain that senses millivolt changes in transmembrane potential, to regulate ion permeation through the channel. A recently discovered protein, Ci-VSP, has a voltage sensor that is coupled not to an ion channel but to a phosphatidylinositide phosphosphatase, the activity of which depends on membrane potential.

In a new paper published in The Journal of Physiology, Murata and Okamura, from the Okazaki Institute for Integrative Bioscience, examine a voltage-sensitive phosphatase that converts an electrical to a chemical signal; they directly demonstrate that the enzyme activity of Ci-VSP changes in a voltage-dependent manner through the operation of the voltage sensor.

Prior to this work, it was unclear which phosphoinositides were the major substrates of the phosphatase activity, and whether depolarisation or hyperpolarisation induced the phosphatase activity. By expressing phosphoinositide-specific sensors in Xenopus oocytes and applying both electrophysiology and imaging of phosphoinositides, it was shown that enzyme activity is activated upon depolarisation (not upon hyperpolarisation), and that levels of both PtdIns(4,5)P2 and PtsIns(3,4,5)P3 are regulated by the operation of voltage sensor.

“Our findings identify common principles of the voltage sensor shared between voltage-gated ion channels and the voltage-sensing phosphatase," comment the authors. "There is no question that the VSP is a much simpler model than ion channels for understanding the mechanisms of voltage sensing, and understanding the VSP will provide insights into the function of ion channels as well.

Such knowledge is critical for understanding general mechanisms of voltage sensing and many disorders coupled with altered membrane excitabilities. The VSP’s ability to tune phosphoinositide phosphatase activity by voltage will also serve as an important molecular tool to understand mechanisms of tumor suppressor phosphatase, PTEN, and other phosphatases that underlie carcinogenesis and metabolic disorders."

Melanie Thomson | alfa
Further information:
http://www.physoc.org
http://www.blackwellpublishing.com

Further reports about: Ion Phosphatase mechanisms phosphoinositide sensing

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>